1
|
Hua X, Yu L, Zhu H, Zhu Y, Fan G, Zhou G. Research progress of circRNAs in bone-related diseases. Front Oncol 2025; 15:1481322. [PMID: 39931083 PMCID: PMC11807992 DOI: 10.3389/fonc.2025.1481322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that exist naturally in various eukaryotic organisms. The majority of circRNAs are produced through the splicing of exons, although there are a limited number that are generated through the circularization of introns. Studies have shown that circRNAs play an irreplaceable role in the pathogenesis, disease progression, diagnosis, and targeted therapy of motor system tumors (osteosarcoma), metabolic diseases (osteoporosis), and degenerative diseases (osteonecrosis of the femoral head, osteoarthritis, intervertebral disc degeneration). This review summarizes the advancements in circRNA detection techniques and the research progress of circRNAs in orthopedic diseases.
Collapse
Affiliation(s)
- Xianming Hua
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingfeng Yu
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhu
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Zhu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gentao Fan
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Wuxi Xishan Nanjing University (NJU) Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Lu X, Wang X, Wang P, Zhu Y, Liu J, Liu G, Liu R. Identification of candidate genes and chemicals associated with osteonecrosis of femoral head by multiomics studies and chemical-gene interaction analysis. Front Endocrinol (Lausanne) 2024; 15:1419742. [PMID: 39253583 PMCID: PMC11382631 DOI: 10.3389/fendo.2024.1419742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Objectives In-depth understanding of osteonecrosis of femoral head (ONFH) has revealed that degeneration of the hip cartilage plays a crucial role in ONFH progression. However, the underlying molecular mechanisms and susceptibility to environmental factors in hip cartilage that contribute to ONFH progression remain elusive. Methods We conducted a multiomics study and chemical-gene interaction analysis of hip cartilage in ONFH. The differentially expressed genes (DEGs) involved in ONFH progression were identified in paired hip cartilage samples from 36 patients by combining genome-wide DNA methylation profiling, gene expression profiling, and quantitative proteomics. Gene functional enrichment and pathway analyses were performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Functional links between proteins were discovered through protein-protein interaction (PPI) networks. The ONFH-associated chemicals were identified by integrating the DEGs with the chemical-gene interaction sets in the Comparative Toxicogenomics Database (CTD). Finally, the DEGs, including MMP13 and CHI3L1, were validated via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results Twenty-two DEGs were identified across all three omics levels in ONFH cartilage, 16 of which were upregulated and six of which were downregulated. The collagen-containing extracellular matrix (ECM), ECM structural constituents, response to amino acids, the relaxin signaling pathway, and protein digestion and absorption were found to be primarily involved in cartilage degeneration in ONFH. Moreover, ten major ONFH-associated chemicals were identified, including, benzo(a)pyrene, valproic acid, and bisphenol A. Conclusion Overall, our study identified several candidate genes, pathways, and chemicals associated with cartilage degeneration in ONFH, providing novel clues into the etiology and biological processes of ONFH progression.
Collapse
Affiliation(s)
- Xueliang Lu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Orthopedics, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xu Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengbo Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingkang Zhu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Liu
- Department of Orthopedics, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Ruiyu Liu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zhao G, Liu Y, Zheng Y, An M, Zhang J, Zhang J, Li Z, Chunbao L. Exploring molecular mechanisms of intra-articular changes in osteonecrosis of femoral head using DIA proteomics and bioinformatics. J Orthop Surg Res 2024; 19:13. [PMID: 38169408 PMCID: PMC10763026 DOI: 10.1186/s13018-023-04464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE This study is aimed to delve into the crucial proteins associated with hormonal osteonecrosis of the femoral head (ONFH) and its intra-articular lesions through data-independent acquisition (DIA) proteomics and bioinformatics analysis. METHODS We randomly selected samples from eligible ONFH patients and collected samples from the necrotic area of the femoral head and load-bearing cartilage. The control group comprised specimens from the same location in patients with femoral neck fractures. With DIA proteomics, we quantitatively and qualitatively tested both groups and analyzed the differentially expressed proteins (DEPs) between groups. Additionally, we enriched the analysis of DEP functions using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways and verified the key proteins in ONFH through Western blot. RESULTS Proteomics experiment uncovered 937 common DEPs (422 upregulated and 515 downregulated) between the two groups. These DEPs mainly participate in biological processes such as hidden attributes, catalytic activity, molecular function regulators, and structural molecule activity, and in pathways such as starch and sucrose metabolism, ECM-receptor interaction, PI3K-Akt signaling, complement and coagulation cascades, IL-17 signaling, phagosome, transcriptional misregulation in cancers, and focal adhesion. Through protein-protein interaction network target gene analysis and Western blot validation, we identified C3, MMP9, APOE, MPO, LCN2, ELANE, HPX, LTF, and THBS1 as key proteins in ONFH. CONCLUSIONS With DIA proteomics and bioinformatics analysis, this study reveals the molecular mechanisms of intra-articular lesions in ONFH. A correlation in the necrotic area and load-bearing cartilage of ONFH at ARCO stages IIIB-IV as well as potential key regulatory proteins was identified. These findings will help more deeply understand the pathogenesis of ONFH and may provide important clues for seeking more effective treatment strategies.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
- Department of Orthopaedics, Chinese PLA 984 Hospital, Beijing, 100029, China
- Medical school of Chinese PLA, Beijing, 100853, China
| | - Yujie Liu
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yongjun Zheng
- Department of Orthopaedics, Chinese PLA 984 Hospital, Beijing, 100029, China
| | - Mingyang An
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jia Zhang
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jing Zhang
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhongli Li
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Li Chunbao
- Department of Orthopedics, the No.4 Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
4
|
Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020297. [PMID: 36837498 PMCID: PMC9962586 DOI: 10.3390/medicina59020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives. Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serve complication of long-term administration of glucocorticoids. Previous experimental studies have shown that ferroptosis might be involved in the pathological process of GIONFH. The purpose of this study is to identify the ferroptosis-related genes and pathways of GIONFH by bioinformatics to further illustrate the mechanism of ferroptosis in SONFH through bioinformatics analysis. Materials and Methods. The GSE123568 mRNA expression profile dataset, including 30 GIONFH samples and 10 non-GIONFH samples, was downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related genes were obtained from the FerrDb database. First, differentially expressed genes (DEGs) were identified between the serum samples from GIONFH cases and those from controls. Ferroptosis-related DEGs were obtained from the intersection of ferroptosis-related genes and DEGs. Only ferroptosis DEGs were used for all analyses. Then, we conducted a Kyoto encyclopedia of genome (KEGG) and gene ontology (GO) pathway enrichment analysis. We constructed a protein-protein interaction (PPI) network to screen out hub genes. Additionally, the expression levels of the hub genes were validated in an independent dataset GSE10311. Results. A total of 27 ferroptosis-related DEGs were obtained between the peripheral blood samples of GIONFH cases and non-GIONFH controls. Then, GO, and KEGG pathway enrichment analysis revealed that ferroptosis-related DEGs were mainly enriched in the regulation of the apoptotic process, oxidation-reduction process, and cell redox homeostasis, as well as HIF-1, TNF, FoxO signaling pathways, and osteoclast differentiation. Eight hub genes, including TLR4, PTGS2, SNCA, MAPK1, CYBB, SLC2A1, TXNIP, and MAP3K5, were identified by PPI network analysis. The expression levels of TLR4, TXNIP and MAP3K5 were further validated in the dataset GSE10311. Conclusion. A total of 27 ferroptosis-related DEGs involved in GIONFH were identified via bioinformatics analysis. TLR4, TXNIP, and MAP3K5 might serve as potential biomarkers and drug targets for GIONFH.
Collapse
|
5
|
Zhang J, Nishida Y, Koike H, Ito K, Zhuo L, Nishida K, Kimata K, Ikuta K, Sakai T, Urakawa H, Seki T, Imagama S. Hyaluronan in articular cartilage: Analysis of hip osteoarthritis and osteonecrosis of femoral head. J Orthop Res 2023; 41:307-315. [PMID: 35538609 DOI: 10.1002/jor.25364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA) plays crucial roles in the maintenance of high-quality cartilage extracellular matrix. Several studies have reported the HA in synovial fluid in patients with osteoarthritis (OA), but few have described the changes of HA in articular cartilage of OA or idiopathic osteonecrosis of the femoral head (ONFH). KIAA1199 was recently reported to have strong hyaluronidase activity. The aim of this study was to clarify the HA metabolism in OA and ONFH, particularly the involvement of KIAA1199. Immunohistochemical analysis of KIAA1199 and HA deposition was performed for human OA (n = 10), ONFH (n = 10), and control cartilage (n = 7). The concentration and molecular weight (MW) of HA were determined by competitive HA ELISA and Chromatography, respectively. Regarding HA metabolism-related molecules, HAS1, HAS2, HAS3, HYAL1, HYAL2, and KIAA1199 gene expression was assessed by reverse transcriptase polymerase chain reaction. Histological analysis showed the overexpression of KIAA1199 in OA cartilage, which was accompanied by decreased hyaluronic acid binding protein (HABP) staining compared with ONFH and control. Little KIAA1199 expression was observed in cartilage at the collapsed area of ONFH, which was accompanied by a slight decrease in HABP staining. The messenger RNA (mRNA) expression of HAS2 and KIAA1199 was upregulated in OA cartilage, while the mRNA expression of genes related to HA catabolism in ONFH cartilage showed mostly a downward trend. The MW of HA in OA cartilage increased while that in ONFH cartilage decreased. HA metabolism in ONFH is suggested to be generally indolent, and is activated in OA including high expression of KIAA1199. Interestingly, MW of HA in OA cartilage was not reduced.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Lisheng Zhuo
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuki Nishida
- Department of Biostatistics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohisa Sakai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Urakawa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taisuke Seki
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Differentially Expressed Genes Reveal the Biomarkers and Molecular Mechanism of Osteonecrosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8684137. [PMID: 35035862 PMCID: PMC8759865 DOI: 10.1155/2022/8684137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Osteonecrosis is one of the most refractory orthopedic diseases, which seriously threatens the health of old patients. High-throughput sequencing (HTS) and microarray analysis have confirmed as an effective way for investigating the pathological mechanism of disease. In this study, GSE7716, GSE74089, and GSE123568 were obtained from Gene Expression Omnibus (GEO) database and used to identify differentially expressed genes (DEGs) by R language. Subsequently, the DEGs were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Moreover, the protein-protein interaction (PPI) network of DEGs was analyzed by STRING database and Cytoscape. The results showed that 318 downregulated genes and 58 upregulated genes were observed in GSE7116; 690 downregulated genes and 1148 upregulated genes were screened from 34183 genes in GSE74089. The DEGs involved in progression of osteonecrosis involved inflammation, immunological rejection, and bacterial infection-related pathways. The GO enrichment showed that osteonecrosis was related with extracellular matrix, external encapsulating structure organization, skeletal system development, immune response activity, cell apoptosis, mononuclear cell differentiation, and serine/threonine kinase activity. Moreover, PPI network showed that the progression of osteonecrosis of the femoral head was related with CCND1, CDH1, ESR1, SPP1, LOX, JUN, ITGA, ABL1, and VEGF, and osteonecrosis of the jaw is related with ACTB, CXCR4, PTPRC, IL1B, CXCL8, TNF, JUN, PTGS2, FOS, and RHOA. In conclusion, this study identified the hub factors and pathways which might play important roles in progression of osteonecrosis and could be used as potential biomarkers for diagnosis and treatment of osteonecrosis.
Collapse
|
7
|
Shi W, Zhang X, Xu C, Pang R, Fan Z, Wan X, Jiang Z, Li H, Li Z, Zhang H. Identification of Hub Genes and Pathways Associated with Oxidative Stress of Cartilage in Osteonecrosis of Femoral Head Using Bioinformatics Analysis. Cartilage 2022; 13:19476035221074000. [PMID: 35118903 PMCID: PMC9137318 DOI: 10.1177/19476035221074000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This study aimed to identify the hub genes and pathways of genes related to oxidative stress of cartilage in osteonecrosis of femoral head (ONFH), and to predict the transcription factors of the hub genes. METHODS The GSE74089 was obtained from the Gene Expression Omnibus (GEO) database, including 4 necrotic tissues and 4 normal tissues, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. GO and signaling pathways analysis were performed using DAVID, Metascape, and GSEA. Protein-protein interaction (PPI) network was constructed using the STRING database, and the Degree algorithm of Cytoscape software was used to screen for hub genes. Finally, the NetworkAnalyst web tool was used to find the hub genes' transcriptional factors (TFs). RESULTS In total, 440 oxidative stress-related genes were found in GSE74089 and GO database, and 88 of them were significantly differentially expressed. These genes were mainly involved in several signaling pathways, such as MAPK signaling pathway, PI3K-AKT-mTOR signaling pathway, FOXO signaling pathway. The top 10 hub genes were JUN, FOXO3, CASP3, JAK2, RELA, EZH2, ABL1, PTGS2, FBXW7, MCL1. Besides, TFAP2A, GATA2, SP1, and E2F1 may be the key regulatory factors of hub genes. CONCLUSIONS We identified some hub genes and signaling pathways associated with oxidative stress in ONFH through a series of bioinformatics analyses.
Collapse
Affiliation(s)
- Wei Shi
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xinglong Zhang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Chunlei Xu
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Ran Pang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhenqi Fan
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Xin Wan
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhaohui Jiang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Hui Li
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhijun Li
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China,Zhijun Li, Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China.
| | - Huafeng Zhang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
8
|
Shang Y, Xu J, Zhang T, Dong Z, Li J, Bi W, Xie Z. Prediction of the Collapse of Necrotic Femoral Head by CT and X-Ray Examinations before Hip Replacement Based on Intelligent Medical Big Data. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9971236. [PMID: 34976333 PMCID: PMC8716235 DOI: 10.1155/2021/9971236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022]
Abstract
It was to explore the effect of the CT and X-ray examinations before the hip replacement to predict the collapse of the necrotic femoral head under the classification of medical big data based on the decision tree algorithm of the difference grey wolf optimization (GWO) and provide a more effective examination basis for the treatment of patients with the osteonecrosis of the femoral head (ONFH). From January 2019 to January 2021, a total of 152,000 patients with ONFH and hip replacement in the tertiary hospitals were enrolled in this study. They were randomly divided into two groups, the study sample-X group (X-ray examination results) and based-CT group (CT examination results)-76,000 cases in each group. The actual measurement results of the femoral head form the gold standard to evaluate the effect of the two groups of detection methods. The measurement results of X-ray and CT before hip replacement are highly consistent with the detection results of the physical femoral head specimens, which can effectively predict the collapse of ONFH and carry out accurate staging. It is worthy of clinical promotion.
Collapse
Affiliation(s)
- Yongwei Shang
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Jianjie Xu
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Ting Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhihui Dong
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Jiebing Li
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Weidong Bi
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Zhe Xie
- The Second Department of Orthopedics, The People Hospital of Shijiazhuang, Shijiazhuang 050000, China
| |
Collapse
|
9
|
Zhu T, Jiang M, Zhang M, Cui L, Yang X, Wang X, Liu G, Ding J, Chen X. Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact Mater 2021; 9:446-460. [PMID: 34820582 PMCID: PMC8586813 DOI: 10.1016/j.bioactmat.2021.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis is a common orthopedic disease in clinic, resulting in joint collapse if no appropriate treatment is performed in time. Core decompression is a general treatment modality for early osteonecrosis. However, effective bone regeneration in the necrotic area is still a significant challenge. This study developed a biofunctionalized composite scaffold (PLGA/nHA30VEGF) for osteonecrosis therapy through potentiation of osteoconduction, angiogenesis, and a favorable metabolic microenvironment. The composite scaffold had a porosity of 87.7% and compressive strength of 8.9 MPa. PLGA/nHA30VEGF had an average pore size of 227.6 μm and a water contact angle of 56.5° with a sustained release profile of vascular endothelial growth factor (VEGF). After the implantation of PLGA/nHA30VEGF, various osteogenic and angiogenic biomarkers were upregulated by 2–9 fold compared with no treatment. Additionally, the metabolomic and lipidomic profiling studies demonstrated that PLGA/nHA30VEGF effectively regulated the multiple metabolites and more than 20 inordinate metabolic pathways in osteonecrosis. The excellent performances reveal that the biofunctionalized composite scaffold provides an advanced adjuvant therapy modality for osteonecrosis. A biofunctionalized organic−inorganic composite scaffold is developed for osteonecrosis therapy. The biofunctionalized composite scaffold potentiates osteoconduction and angiogenesis in osteonecrosis. The biofunctionalized composite scaffold reverses the adverse microenvironments of osteonecrosis. The biofunctionalized composite scaffold provides a promising clinical modality for treatment of early osteonecrosis.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Mengyang Jiang
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Liguo Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xiaoyu Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
10
|
Zhang SY, Wang F, Zeng XJ, Huang Z, Dong KF. Astragalus polysaccharide ameliorates steroid-induced osteonecrosis of femoral head through miR-206/HIF-1α/BNIP3 axis. Kaohsiung J Med Sci 2021; 37:1089-1100. [PMID: 34338434 DOI: 10.1002/kjm2.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023] Open
Abstract
Declining autophagy and rising apoptosis are the main factors driving the development of steroid-induced osteonecrosis of the femoral head (SONFH). Here, we showed that astragalus polysaccharide (APS) improved femoral head necrosis via regulation of cell autophagy and apoptosis through microRNA (miR)-206/hypoxia inducible factor-1 (HIF-1α)/BCL2 interacting protein 3 (BNIP3) axis. The expression of miR-206, HIF-1α, and BNIP3 in SONFH specimens and cell model were measured using qPCR. SONFH cell model was treated with APS. Cell autophagy was evaluated using LC3-immunofluorescence assays. Flow cytometry was conducted to assess cell apoptosis. Apoptosis-related proteins and autophagy-related proteins were determined using western blot. Besides, dual-luciferase reporter assay was employed to investigate the relationship between miR-206 and HIF-1α. Here we showed that miR-206 expression was upregulated in SONFH tissues and cell model. APS promoted autophagy and inhibited apoptosis in SONFH cell model via downregulating miR-206. What is more, HIF-1α was the target of miR-206. Knockdown of HIF-1α reversed the recovery effect of miR-206 inhibitor on SONFH cell model. Furthermore, BNIP3 was the target of HIF-1α. HIF-1α overexpression promoted autophagy and inhibited apoptosis, and knockdown of BNIP3 abolished the recovery effect of HIF-1α overexpression in SONFH cell model. These results provided evidence that APS reduced miR-206 expression, and the downregulated miR-206 increased BNIP3 expression by targeting HIF-1α to promote autophagy and inhibit bone cell apoptosis. Our research proved that APS effectively improved SONFH by regulating cell autophagy and apoptosis.
Collapse
Affiliation(s)
- Shen-Yao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiang-Jing Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Huang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke-Fang Dong
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Extracorporeal Shockwave Therapy Modulates the Expressions of Proinflammatory Cytokines IL33 and IL17A, and Their Receptors ST2 and IL17RA, within the Articular Cartilage in Early Avascular Necrosis of the Femoral Head in a Rat Model. Mediators Inflamm 2021; 2021:9915877. [PMID: 34305456 PMCID: PMC8285177 DOI: 10.1155/2021/9915877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Avascular necrosis (AVN) of the femoral head (AVNFH) is a disease caused by injury to the blood supply of the femoral head, resulting in a collapse with osteonecrosis and damage to the articular cartilage. Extracorporeal shockwave therapy (ESWT) has been demonstrated to improve AVNFH owing to its anti-inflammation activity, angiogenesis effect, and tissue regeneration in clinical treatment. However, there are still so many pieces of the jigsaw that need to be fit into place in order to ascertain the mechanism of ESWT for the treatment of AVNFH. The study demonstrated that ESWT significantly protected the trabecular bone volume fraction BV/TV (P < 0.01) and the trabecular thickness (P < 0.001), while in contrast, the trabecular number and trabecular separation were not significantly different after treatment as compared with AVNFH. ESWT protected the articular cartilage in animal model of AVNFH. The levels of IL1-β and IL33 were significantly induced in the AVNFH group (P < 0.001) as compared with Sham and ESWT groups and reduced in ESWT group (P < 0.001) as compared with AVNFH group. In addition, the expression of the receptor of IL33, ST2, was reduced in AVNFH and induced after ESWT (P < 0.001). The expression of IL17A was induced in the AVNFH group (P < 0.001) and reduced in the ESWT group (P < 0.001). Further, the expression of the receptor of IL17A, IL17RA, was reduced in the AVNFH group (P < 0.001) and improved to a normal level in the ESWT group as compared with Sham group (P < 0.001). Taken together, the results of the study indicated that ESWT modulated the expression of IL1-β, pro-inflammatory cytokines IL33 and IL17A, and their receptors ST2 and IL17RA, to protect against loss of the extracellular matrix in the articular cartilage of early AVNFH.
Collapse
|
12
|
Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G, Song Y. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone 2020; 133:115258. [PMID: 32018039 DOI: 10.1016/j.bone.2020.115258] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a common debilitating orthopedic disease. The bone marrow mesenchymal stem cells (BMSCs) are a type of mesenchymal stem cells which play crucial roles in bone repair. The adipogenic/osteogenic differentiation disorder of BMSCs has been widely perceived contributing to SONFH. However, the regulatory mechanism of BMSCs differentiation disorder still remains unclear. Circular RNA (circRNA), a kind of stable ncRNA, plays important roles in regulating gene expression via various ways. To date, there are no studies to uncover the circRNA expression profile and screen out the key circRNAs playing crucial roles in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs. In present study, we detected the circRNA expression profiles in SONFH-BMSCs for the first time. A total of 820 circRNAs were differentially expressed in SONFH-BMSCs, including 460 up- and 360 down-regulated circRNAs. Bioinformatics analysis indicates circRNA CDR1as, one up-regulated circRNA, may play crucial role in adipogenic/osteogenic differentiation disorder of SONFH-BMSCs via CDR1as-miR-7-5p-WNT5B axis. Knocking-down CDR1as resulted in increasing of osteogenic differentiation and decreasing of adipogenic differentiation of BMSCs, while over-expressing CDR1as resulted in decreasing of osteogenic differentiation and increasing of adipogenic differentiation of BMSCs. The miR-7-5p binding sites of CDR1as and WNT5B were verified by luciferase reporter gene assay. Our study may provide new insights into the molecular mechanisms of osteogenic/adipogenic differentiation disorder of SONFH-BMSCs and new biomarkers for the diagnosis and treatment of SONFH.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Qingyu Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Zhaoyan Li
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Qiwei Yang
- Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| | - Zhenwu Du
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Guizhen Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
| | - Yang Song
- Department of Orthopedics, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China; The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China.
| |
Collapse
|
13
|
Zhao J, Mu L, Wang Z, Fang X, He X, Zhang X, Xu X. The potential roles of circular RNAs in osteonecrosis of the femoral head (Review). Mol Med Rep 2019; 21:533-539. [PMID: 31974613 PMCID: PMC6947852 DOI: 10.3892/mmr.2019.10866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are categorized as non-coding RNAs that, unlike widely known canonical linear RNAs, form a covalently closed continuous loop without 5′ or 3′ polarities, which enables them to resist digestion by RNA exonucleases. Although the functions of circRNAs remain largely unknown, accumulated evidence has demonstrated that circRNAs can act as microRNA sponges, which allows them to regulate numerous biological processes and disease mechanisms, including apoptosis, angiogenesis, invasion, metastasis and stem cell differentiation. Although research into circRNAs is in its infancy, studies have identified critical roles for circRNAs in the initiation and progression of disease. The present study delineated the characteristics and functions of circRNAs, and focused on the potential relationship between circRNAs and osteonecrosis of the femoral head (ONFH). CircRNAs represent a novel avenue for studying the mechanisms underlying ONFH as well as possible treatments.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Long Mu
- Department of Orthopaedics, Harbin Fifth Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Zhengchun Wang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiangchun Fang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xuefeng He
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaofeng Zhang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xilin Xu
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
14
|
Wu RW, Lian WS, Kuo CW, Chen YS, Ko JY, Wang FS. S100 Calcium Binding Protein A9 Represses Angiogenic Activity and Aggravates Osteonecrosis of the Femoral Head. Int J Mol Sci 2019; 20:ijms20225786. [PMID: 31752076 PMCID: PMC6887714 DOI: 10.3390/ijms20225786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9 (S100A9) is known to deteriorate joint integrity, however, little is understood about which role S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated with the patients with a history of being on glucocorticoid medication and alcohol consumption. Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately accelerating femoral head deterioration through reducing angiogenesis. This study provides insight into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights that serum S100A9 is a sensitive biochemical indicator of ONFH.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Feng-Sheng Wang
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence:
| |
Collapse
|