1
|
Pilotto Heming C, de Souza Barbosa I, Lyra Miranda R, Nogueira Ugarte O, Santório de São José V, Moura Neto V, Aran V. P-Glycoprotein Drives Glioblastoma Survival and Chemotherapy Resistance: Potential as a Promising Liquid Biopsy Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(24)00476-0. [PMID: 39788485 DOI: 10.1016/j.ajpath.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Drug resistance is a major challenge in cancer therapy, and the expression of efflux pumps such as P-glycoprotein (P-gp, ABCB1) often correlates with poor prognosis in various tumors, including glioblastoma (GB). Considering that different roles for these proteins have been established in the biology of various tumors, this study aimed to investigate the functions of P-gp in GB-derived cells by evaluating its survival, migratory, and apoptosis-regulating capabilities, as well as its potential as a liquid biopsy biomarker. P-gp expression was diminished via siRNA to determine its exact role in GB biology. The P-gp mRNA levels were evaluated by using quantitative real-time RT-PCR. With respect to liquid biopsy, circulating cell-free RNA was extracted from plasma belonging to patients diagnosed with GB, and P-gp levels were compared with matching tumor tissues using digital PCR. P-gp silencing significantly decreased viability, increased apoptosis, and enhanced chemotherapy sensitivity in GB cells, although it did not affect migratory patterns. Finally, P-gp expression levels in circulating cell-free RNA from patients with GB matched tumor tissue, whereas healthy volunteers appeared to bear no circulating P-gp. Taken together, the results indicate that P-gp affects GB tumor biology beyond its known role in drug resistance and could integrate a broader molecular signature for future diagnosis via liquid biopsy.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isabel de Souza Barbosa
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | | | | | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
El Mashad SN, Kandil MAEH, Talab TAEH, Saied Abd El Naby AEN, Sultan MM, Sohaib A, Hemida AS. Gastric Carcinoma with low ROR alpha, low E- Cadherin and High LAPTM4B Immunohistochemical Profile; is associated with unfavorable prognosis in Egyptian patients. J Immunoassay Immunochem 2024; 45:50-72. [PMID: 38031398 DOI: 10.1080/15321819.2023.2279639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In view of multiplicity of carcinogenic pathways of gastric carcinoma (GC), poor survival and chemotherapy resistance, more analysis of these pathways is required for prediction of prognosis and developing new therapeutic targets. Knocking down of RORα; induces tumor cell proliferation and epithelial-mesenchymal transition (EMT). LAPTM4B has been suggested to be associated with EMT which promote tumor invasion. This work aimed to investigate prognostic role of RORα, LAPTM4B, and E-Cadherin expression in GC. This retrospective immunohistochemical study assesses the expression of RORα, LAPTM4B, and E-Cadherin in 73 primary gastric carcinomas. Low RORα and high LAPTM4B expression in GC cases were associated with unfavorable prognostic factors such as positive lymph nodes, and high tumor budding. E-Cadherin heterogeneous staining was associated with poor prognostic criteria, such as diffuse type GC and high tumor budding. Low RORα, high LAPTM4B, and heterogeneous E-Cadherin were the most common immunohistochemical profile in GC cases. Low RORα expression showed poor prognostic impact on overall patient survival. In conclusion, RORα and LAPTM4B may have crucial role in GC aggressiveness. The predominance of low RORα, high LAPTM4B, and heterogeneous or negative E-Cadherin immunohistochemical profile in GC cases with unfavorable pathological parameters suggested that this profile may predict tumor behavior.
Collapse
Affiliation(s)
| | | | | | | | - Mervat Mahmoud Sultan
- Pathology Department, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | - Ahmed Sohaib
- Clinical Oncology& Nuclear medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
3
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Mashad SNE, Kandil MAE, Talab TAE, Naby AENSAE, Sultan MM, Sohaib A, Hemida AS. Gastric Carcinoma with low ROR alpha, low E- Cadherin and High LAPTM4B Immunohistochemical Profile; is associated with poor prognosis in Egyptian patients.. [DOI: 10.21203/rs.3.rs-2123133/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Gastric carcinoma (GC) is the tenth most prevalent cancer in both sexes in Egypt. Many pathways have been investigated regarding pathogenesis of GC, including epithelial-mesenchymal transition (EMT) pathway. In view of multiplicity of carcinogenic pathways, poor survival and chemotherapy resistance detected in GC patients, more analysis of these pathways is required for better molecular selection of patients, prediction of prognosis and developing new therapeutic targets. Down-regulation of E-Cadherin is an important EMT stage. RORα is a tumor suppressor gene, expressed in normal epithelial tissues and reduced in a variety of human cancers. Knocking down of RORα; increase cell proliferation, EMT, migration, and invasion. LAPTM4B is a protooncogene and it has been suggested to be strictly associated with EMT induction. Therefore, this work aims to investigate the role of RORα, LAPTM4B and E-Cadherin and its relationship to prognosis of GC.
Methods
This is a retrospective study where the standard immunohistochemical technique was done to assess the expression of RORα, LAPTM4B and E-Cadherin in 167 cases of chronic gastritis (control group) and 73 primary gastric carcinomas (51 of them have available adjacent non tumor tissue).
Results
Low RORα and high LAPTM4B expression in GC cases were associated with unfavorable prognostic factors such as positive lymph nodes, and high tumor budding. E-Cadherin Heterogeneous staining was associated with poor prognostic pathological criteria, such as diffuse type GC and high tumor budding. In GC, there was significant co parallel correlation between RORα and E-Cadherin expression while LAPTM4B showed inverse correlation with E-Cadherin expression. Low RORα, high LAPTM4B, and negative or heterogeneous E-Cadherin were the most common immunohistochemical profile in GC cases. Low RORα expression showed poor prognostic impact on overall patient survival.
Conclusions
Low RORα H-score and increased expression of LAPTM4B were significantly associated with unfavorable prognostic parameters of GC which may indicate their crucial role in tumor aggressiveness. The predominance of low RORα, high LAPTM4B and heterogeneous or negative E-Cadherin immunohistochemical profile in GC cases with unfavorable pathological parameters suggested that this profile may predict tumor behavior and this profile could be linked to EMT molecular subtype of GC
Collapse
|
5
|
Abstract
Hypoxia is defined as a cellular stress condition caused by a decrease in oxygen below physiologically normal levels. Cells in the core of a rapidly growing solid tumor are faced with the challenge of inadequate supply of oxygen through the blood, owing to improper vasculature inside the tumor. This hypoxic microenvironment inside the tumor initiates a gene expression program that alters numerous signaling pathways, allowing the cancer cell to eventually evade adverse conditions and attain a more aggressive phenotype. A multitude of studies covering diverse aspects of gene regulation has tried to uncover the mechanisms involved in hypoxia-induced tumorigenesis. The role of epigenetics in executing widespread and dynamic changes in gene expression under hypoxia has been gaining an increasing amount of support in recent years. This chapter discusses, in detail, various epigenetic mechanisms driving the cellular response to hypoxia in cancer.
Collapse
Affiliation(s)
- Deepak Pant
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Srinivas Abhishek Mutnuru
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
6
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
7
|
Gao J, Zhu J, Zhao Y, Gan X, Yu H. Leptin attenuates hypoxia-induced apoptosis in human periodontal ligament cells via the reactive oxygen species-hypoxia-inducible factor-1α pathway. Exp Physiol 2021; 106:1752-1761. [PMID: 34143536 DOI: 10.1113/ep089324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does leptin have an effect on hypoxia-induced apoptosis in human periodontal ligament cells (hPDLCs), and what is the potential underlying mechanism? What is the main finding and its importance? Hypoxia induces cell apoptosis and leptin expression in hPDLCs through the induction of hypoxia-inducible factor-1α and accumulation of reactive oxygen species (ROS). Leptin shows feedback inhibition on hypoxia-induced ROS-mediated apoptosis in hPDLCs, suggesting a new application of leptin for hypoxic damage in periodontal diseases. ABSTRACT Hypoxia-induced apoptosis of human periodontal ligament cells (hPDLCs) is an important contributor to the progression of various periodontal diseases. Although leptin has been shown to protect connective tissue cells against hypoxia-induced injury, whether it might do so by attenuating hypoxia-induced apoptosis in hPDLCs remains unclear. Here, using CoCl2 treatment, we simulated hypoxic conditions in hPDLCs and explored whether apoptosis and reactive oxygen species (ROS) levels were related to hypoxia. After small interfering RNA (siRNA) inhibition of leptin and hypoxia-inducible factor-1α (HIF-1α), the levels of apoptosis, ROS and leptin expression were measured. We showed that in CoCl2 -treated hPDLCs, significantly higher cell apoptosis rates and ROS accumulation were observed. Cobalt chloride also increased leptin and HIF-1α expression in hPDLCs. Further investigation of the pathway demonstrated that inhibition of ROS attenuated hypoxia-induced cell apoptosis and leptin expression, whereas siRNA inhibition of leptin aggravated hypoxia-induced cell apoptosis and ROS accumulation. Hypoxia induces cell apoptosis and leptin expression in hPDLCs through the induction of ROS and HIF-1α pathways, and leptin shows feedback inhibition on ROS-mediated apoptosis in hPDLCs. These findings suggest a new application of leptin for hypoxic damage in periodontal diseases.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junfei Zhu
- Stomatology Center, China Japan Friendship Hospital, Beijing, 100029, China
| | - Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Peiró CHF, Perez MM, de Aquino GSA, Encinas JFA, Sousa LVDA, da Veiga GL, Del Giglio A, Fonseca FLA, da Costa Aguiar Alves B. Diagnostic potential of hypoxia-induced genes in liquid biopsies of breast cancer patients. Sci Rep 2021; 11:8724. [PMID: 33888756 PMCID: PMC8062492 DOI: 10.1038/s41598-021-87897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
In tumor cells, higher expression of glucose transporter proteins (GLUT) and carbonic anhydrases (CAIX) genes is influenced by hypoxia-induced factors (HIF).Thus, we aimed to study the expression profile of these markers in sequential peripheral blood collections performed in breast cancer patients in order to verify their predictive potential in liquid biopsies. Gene expressions were analyzed by qPCR in tumor and blood samples from 125 patients and 25 healthy women. Differential expression was determined by the 2(−ΔCq) method. Expression of HIF-1α and GLUT1 in the blood of breast cancer patients is significantly higher (90–91 and 160–161 fold increased expression, respectively; p < 0.0001) than that found in healthy women. Their diagnostic power was confirmed by ROC curve. CAIX is also more expressed in breast cancer women blood, but its expression was detected only in a few samples. But none of these genes could be considered predictive markers. Therefore, evaluation of the expression of HIF-1α and GLUT1 in blood may be a useful laboratory tool to complement the diagnosis of breast cancer, in addition to being useful for follow-up of patients and of women with a family history of breast cancer.
Collapse
Affiliation(s)
- Carlos Henrique F Peiró
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Matheus M Perez
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Glauco S A de Aquino
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Jéssica F A Encinas
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | | | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil
| | - Auro Del Giglio
- Departamento de Oncologia e Hematologia do Centro Universitário Saúde ABC-Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Fernando L A Fonseca
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil.,Instituto de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário Saúde ABC, Faculdade e Medicina do ABC, Av. Lauro Gomes, 2000, Santo André, SP, CEP 09060-870, Brazil.
| |
Collapse
|
9
|
Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med 2021; 53:91-102. [PMID: 33420414 PMCID: PMC8080609 DOI: 10.1038/s12276-020-00510-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant neoplasm among women and is the fifth most common cause of cancer-associated death worldwide. Acquired chemoresistance driven by genetic and epigenetic alterations is a significant clinical challenge in treating BC. However, the mechanism of BC cell resistance to adriamycin (ADR) remains to be elucidated. In this study, we identified the methyltransferase-like 3/microRNA-221-3p/homeodomain-interacting protein kinase 2/Che-1 (METTL3/miR-221-3p/HIPK2/Che-1) axis as a novel signaling event that may be responsible for resistance of BC cells to ADR. A dual-luciferase reporter gene assay was employed to test the presence of miR-221-3p binding sites in the 3'UTR of HIPK2. Drug resistance was evaluated by immunoblotting multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP). Cultured ADR-resistant MCF-7 cells were assayed for their half maximal inhibitory concentration (IC50) values and apoptosis using an MTT assay and Annexin V-FITC/PI-labeled flow cytometry, and the cells were then xenografted into nude mice. METTL3 knockdown was shown to reduce the expression of miR-221-3p by reducing pri-miR-221-3p m6A mRNA methylation, thereby reducing the IC50 value of ADR-resistant MCF-7 cells, reducing the expression of MDR1 and BCRP, and inducing apoptosis. Mechanistically, miR-221-3p was demonstrated to negatively regulate HIPK2 and upregulate its direct target Che-1, thus leading to enhanced drug resistance in ADR-resistant MCF-7 cells. In vitro results were reproduced in nude mice xenografted with ADR-resistant MCF-7 cells. Our work elucidates an epigenetic mechanism of acquired chemoresistance in BC, in support of the METTL3/miR-221-3p/HIPK2/Che-1 axis as a therapeutic target for the improvement of chemotherapy.
Collapse
Affiliation(s)
- Xiaoping Pan
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Xiaolv Hong
- grid.284723.80000 0000 8877 7471Department of Infectious Disease, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Sumei Li
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Ping Meng
- grid.284723.80000 0000 8877 7471Central Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| | - Feng Xiao
- grid.284723.80000 0000 8877 7471Clinical Laboratory, Huadu Hospital, Southern Medical University, 510800 Guangzhou, P. R. China
| |
Collapse
|
10
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
11
|
Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:cells9041055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world’s population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial–mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial–mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
|