1
|
Liu B, Katoh H, Komura D, Yamamoto A, Ochi M, Onoyama T, Abe H, Ushiku T, Seto Y, Suo J, Ishikawa S. Functional genomics screening identifies aspartyl-tRNA synthetase as a novel prognostic marker and a therapeutic target for gastric cancers. J Pathol 2022; 258:106-120. [PMID: 35696251 DOI: 10.1002/path.5980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Efficient molecular targeting therapies for most gastric cancers (GCs) are currently lacking, despite GC being one of the most frequent and often devastating malignancies worldwide. Thus, identification of novel therapeutic targets for GC is in high demand. Recent advancements of high-throughput nucleic acid synthesis methods combined with next-generation sequencing (NGS) platforms have made it feasible to conduct functional genomics screening using large-scale pooled lentiviral libraries aimed at discovering novel cancer therapeutic targets. In this study, we performed NGS-based functional genomics screening for human GC cell lines using an originally constructed 6,399 shRNA library targeting all 2,096 human metabolism genes. Our screening identified aspartyl-tRNA synthetase (DARS) as a possible candidate for a therapeutic target for GC. In-house tissue microarrays containing 346 cases of GC combined with public datasets showed that patients with high expression levels of DARS protein exhibited more advanced clinicopathologic parameters and a worse prognosis, specifically among diffuse-type GC patients. Both in vitro and in vivo experiments concretely evidenced that DARS inhibition achieved robust growth suppression of GC cells. Moreover, RNA sequencing of GC cell lines under shRNA-mediated DARS knockdown suggested that DARS inhibition exerts its effect through the inactivation of multiple p-ERK pathways. This MAPK-related growth suppression by DARS inhibition would also be applicable to other cancers; thus, it is warranted to investigate the expression and clinical significance of DARS in a wide spectrum of malignancies. Taken together, NGS-based high-throughput pooled lentiviral screening showed DARS as a novel prognostic marker and a promising therapeutic target for GC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, PR China
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mieko Ochi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jian Suo
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, PR China
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Panda B, Dhar PK. Building Biofoundry India: challenges and path forward. Synth Biol (Oxf) 2021; 6:ysab015. [PMID: 34712840 PMCID: PMC8546612 DOI: 10.1093/synbio/ysab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Biofoundry is a place where biomanufacturing meets automation. The highly modular structure of a biofoundry helps accelerate the design–build–test–learn workflow to deliver products fast and in a streamlined fashion. In this perspective, we describe our efforts to build Biofoundry India, where we see the facility add a substantial value in supporting research, innovation and entrepreneurship. We describe three key areas of our focus, harnessing the potential of non-expressing parts of the sequenced genomes, using deep learning in pathway reconstruction and synthesising enzymes and metabolites. Toward the end, we describe specific challenges in building such facility in India and the path to mitigate some of those working with the other biofoundries worldwide.
Collapse
Affiliation(s)
- Binay Panda
- Biofoundry India, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pawan K Dhar
- Biofoundry India, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|