1
|
Sudmoon R, Kaewdaungdee S, Ho HX, Lee SY, Tanee T, Chaveerach A. The chloroplast genome sequences of Ipomoea alba and I. obscura (Convolvulaceae): genome comparison and phylogenetic analysis. Sci Rep 2024; 14:14078. [PMID: 38890502 PMCID: PMC11189557 DOI: 10.1038/s41598-024-64879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.
Collapse
Affiliation(s)
| | - Sanit Kaewdaungdee
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hao Xuan Ho
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Gao M, Hua T, Niu G, Masabni J, Dewalt W. A locus-dependent mixed inheritance in the segmental allohexaploid sweetpotato ( Ipomoea batatas [L.] Lam). FRONTIERS IN PLANT SCIENCE 2024; 15:1398081. [PMID: 38863536 PMCID: PMC11165125 DOI: 10.3389/fpls.2024.1398081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Two interrelated aspects of the sweetpotato genome, its polyploid origin and inheritance type, remain uncertain. We recently proposed a segmental allohexaploid sweetpotato and thus sought to clarify its inheritance type by direct analyses of homoeolog segregations at selected single-copy loci. For such analyses, we developed a digital quantitative PCR genotyping method using one nondiscriminatory and three discriminatory probes for each selected locus to discriminate and quantify three homoeolog-differentiating variation types (homoeolog-types) in genomic DNA samples for genotype fitting and constructed a F2 population for segregation analyses. We confirmed inter-subgenomic distinctions of three identified homoeolog-types at each of five selected loci by their interspecific differentiations among 14 species in Ipomoea section batatas and genotyped the loci in 549 F2 lines, selected F1 progenies, and their founding parents. Segregation and genotype analyses revealed a locus-dependent mixed inheritance (disomic, polysomic, and intermediate types) of the homoeolog-types at 4 loci in the F2 population, displaying estimated disomic-inheritance frequencies of 0, 2.72%, 14.52%, and 36.92%, and probably in the F1 population too. There were also low-frequency non-hexaploid F1 and F2 genotypes that were probably derived from double-reduction recombination or partially unreduced gametes, and F2 genotypes of apparent aneuploids/dysploids with neopolyploid-like frequencies. Additional analyses of homoeolog-type genotypes at the 5 loci in 46 lines from various regions revealed locus-dependent selection biases, favoring genotypes having more of one homoeolog-type, i.e. more of di- or homogenized homoeolog-type composition, and one-direction ploidy trending among apparent aneuploids/dysploids. These inheritance features pointed to an evolving segmental allohexaploid sweetpotato impacted by selection biases.
Collapse
Affiliation(s)
- Ming Gao
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States
| | - Tien Hua
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States
| | - Genhua Niu
- AgriLife Research and Extension Center at Dallas, Texas A&M University, Dallas, TX, United States
| | - Joe Masabni
- AgriLife Research and Extension Center at Dallas, Texas A&M University, Dallas, TX, United States
| | - Willie Dewalt
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
3
|
Wang Y, Xu J, Hu B, Dong C, Sun J, Li Z, Ye K, Deng F, Wang L, Aslam M, Lv W, Qin Y, Cheng Y. Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species. FRONTIERS IN PLANT SCIENCE 2023; 13:1074697. [PMID: 36733590 PMCID: PMC9887335 DOI: 10.3389/fpls.2022.1074697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
In the Convolvulaceae family, around 1650 species belonging to 60 genera are widely distributed globally, mainly in the tropical and subtropical regions of America and Asia. Although a series of chloroplast genomes in Convolvulaceae were reported and investigated, the evolutionary and genetic relationships among the chloroplast genomes of the Convolvulaceae family have not been extensively elucidated till now. In this study, we first reported the complete chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed coastal plant with medical values. The chloroplast genome of I. pes-caprae is 161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA molecule of I. pes-caprae is a circular structure composed of LSC (large-single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively. The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are identified in the chloroplast genome. Our research results provide important genomic information for the molecular phylogeny of I. pes-caprae. The Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed that the relationship of I. pes-caprae with I. involucrata or I. obscura was much closer than that with other Convolvulaccae species. Further comparative analyses between the Ipomoea species and Cuscuta species revealed the mechanism underlying the formation of parasitic characteristics of Cuscuta species from the perspective of the chloroplast genome.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenliang Lv
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Wu CS, Chen CI, Chaw SM. Plastid phylogenomics and plastome evolution in the morning glory family (Convolvulaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1061174. [PMID: 36605953 PMCID: PMC9808526 DOI: 10.3389/fpls.2022.1061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Convolvulaceae, the morning glories or bindweeds, is a large family containing species of economic value, including crops, traditional medicines, ornamentals, and vegetables. However, not only are the phylogenetic relationships within this group still debated at the intertribal and intergeneric levels, but also plastid genome (plastome) complexity within Convolvulaceae is not well surveyed. We gathered 78 plastomes representing 17 genera across nine of the 12 Convolvulaceae tribes. Our plastid phylogenomic trees confirm the monophyly of Convolvulaceae, place the genus Jacquemontia within the subfamily Dicranostyloideae, and suggest that the tribe Merremieae is paraphyletic. In contrast, positions of the two genera Cuscuta and Erycibe are uncertain as the bootstrap support of the branches leading to them is moderate to weak. We show that nucleotide substitution rates are extremely variable among Convolvulaceae taxa and likely responsible for the topological uncertainty. Numerous plastomic rearrangements are detected in Convolvulaceae, including inversions, duplications, contraction and expansion of inverted repeats (IRs), and losses of genes and introns. Moreover, integrated foreign DNA of mitochondrial origin was found in the Jacquemontia plastome, adding a rare example of gene transfer from mitochondria to plastids in angiosperms. In the IR of Dichondra, we discovered an extra copy of rpl16 containing a direct repeat of ca. 200 bp long. This repeat was experimentally demonstrated to trigger effective homologous recombination, resulting in the coexistence of intron-containing and -lacking rpl16 duplicates. Therefore, we propose a hypothetical model to interpret intron loss accompanied by invasion of direct repeats at appropriate positions. Our model complements the intron loss model driven by retroprocessing when genes have lost introns but contain abundant RNA editing sites adjacent to former splicing sites.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-I. Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Peng JY, Zhang XS, Zhang DG, Wang Y, Deng T, Huang XH, Kuang TH, Zhou Q. Newly reported chloroplast genome of Sinosenecio albonervius Y. Liu & Q. E. Yang and comparative analyses with other Sinosenecio species. BMC Genomics 2022; 23:639. [PMID: 36076168 PMCID: PMC9454173 DOI: 10.1186/s12864-022-08872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sinosenecio B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, are used to analyze the phylogeny of Sinosenecio. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the Sinosenecio albonervius chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three Sinosenecio species. Results The results showed that the chloroplast genomes of four Sinosenecio species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49–56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of S. albonervius based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four Sinosenecio species have close interspecific relationships. Conclusions The complete chloroplast genome of Sinosenecio albonervius was revealed in this study, which included a comparison of Sinosenecio chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on Sinosenecio taxonomy, identification, origin, and evolution to some extent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08872-3.
Collapse
Affiliation(s)
- Jing-Yi Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Xiao-Shuang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dai-Gui Zhang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China.,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China
| | - Yi Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tian-Hui Kuang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China. .,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China.
| |
Collapse
|
6
|
Laux M, Oliveira RRM, Vasconcelos S, Pires ES, Lima TGL, Pastore M, Nunes GL, Alves R, Oliveira G. New plastomes of eight Ipomoea species and four putative hybrids from Eastern Amazon. PLoS One 2022; 17:e0265449. [PMID: 35298523 PMCID: PMC8929602 DOI: 10.1371/journal.pone.0265449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Ipomoea is a large pantropical genus globally distributed, which importance goes beyond the economic value as food resources or ornamental crops. This highly diverse genus has been the focus of a great number of studies, enriching the plant genomics knowledge, and challenging the plant evolution models. In the Carajás mountain range, located in Eastern Amazon, the savannah-like ferruginous ecosystem known as canga harbors highly specialized plant and animal populations, and Ipomoea is substantially representative in such restrictive habitat. Thus, to provide genetic data and insights into whole plastome phylogenetic relationships among key Ipomoea species from Eastern Amazon with little to none previously available data, we present the complete plastome sequences of twelve lineages of the genus, including the canga microendemic I. cavalcantei, the closely related I. marabaensis, and their putative hybrids. The twelve plastomes presented similar gene content as most publicly available Ipomoea plastomes, although the putative hybrids were correctly placed as closely related to the two parental species. The cavalcantei-marabaensis group was consistently grouped between phylogenetic methods. The closer relationship of the I. carnea plastome with the cavalcantei-marabaensis group, as well as the branch formed by I. quamoclit, I. asarifolia and I. maurandioides, were probably a consequence of insufficient taxonomic representativity, instead of true genetic closeness, reinforcing the importance of new plastome assemblies to resolve inconsistencies and boost statistical confidence, especially the case for South American clades of Ipomoea. The search for k-mers presenting high dispersion among the frequency distributions pointed to highly variable coding and intergenic regions, which may potentially contribute to the genetic diversity observed at species level. Our results contribute to the resolution of uncertain clades within Ipomoea and future phylogenomic studies, bringing unprecedented results to Ipomoea species with restricted distribution, such as I. cavalcantei.
Collapse
Affiliation(s)
| | - Renato R. M. Oliveira
- Instituto Tecnológico Vale, Belém, Pará, Brazil
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Mayara Pastore
- Programa de Pós-Graduação em Botânica Tropical, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
7
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
8
|
Xiao S, Xu P, Deng Y, Dai X, Zhao L, Heider B, Zhang A, Zhou Z, Cao Q. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L.] Lam). BMC Genomics 2021; 22:262. [PMID: 33849443 PMCID: PMC8042981 DOI: 10.1186/s12864-021-07544-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. Results The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. Conclusions Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07544-y.
Collapse
Affiliation(s)
- Shizhuo Xiao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Pan Xu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yitong Deng
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Xibin Dai
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Lukuan Zhao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Bettina Heider
- International Potato Center, Av.La Molina 1895, La Molina, Lima, Peru
| | - An Zhang
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Zhilin Zhou
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China
| | - Qinghe Cao
- Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, China Agricultural Academy of Sciences, Xuzhou, 221131, China.
| |
Collapse
|
9
|
Loeuille B, Thode V, Siniscalchi C, Andrade S, Rossi M, Pirani JR. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ 2021; 9:e10886. [PMID: 33665028 PMCID: PMC7912680 DOI: 10.7717/peerj.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lanatus, and Tithonia diversifolia). We analyzed the structure and gene content of the assembled plastomes and performed comparative analyses within Aldama and with other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species. The length of the plastome is also consistent and the junction between regions usually contain the same genes and have similar lengths. A large ∼20 kb and a small ∼3 kb inversion were detected in the Large Single Copy (LSC) regions of all assembled plastomes, similarly to other Asteraceae species. The nucleotide diversity is very low, with only 1,509 variable sites in 127,466 bp (i.e., 1.18% of the sites in the alignment of 36 Aldama plastomes, with one of the IRs removed, is variable). Only one gene, rbcL, shows signatures of positive selection. The plastomes of the selected outgroups feature a similar gene content and structure compared to Aldama and also present the two inversions in the LSC region. Deletions of different lengths were observed in the gene ycf2. Multiple SSRs were identified for the sequenced Aldama and outgroups. The phylogenetic analysis shows that Aldama is not monophyletic due to the position of the Mexican species A. dentata. All Brazilian species form a strongly supported clade. Our results bring new understandings into the evolution and diversity of plastomes at the species level.
Collapse
Affiliation(s)
- Benoit Loeuille
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Verônica Thode
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Sonia Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - José Rubens Pirani
- Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2020; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
11
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2018; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2018] [Indexed: 03/31/2024] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W. George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G. Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J. M. Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|