1
|
Hjazi A, Jasim SA, Al-Dhalimy AMB, Bansal P, Kaur H, Qasim MT, Mohammed IH, Deorari M, Jawad MA, Zwamel AH. HOXA9 versus HOXB9; particular focus on their controversial role in tumor pathogenesis. J Appl Genet 2024; 65:473-492. [PMID: 38753266 DOI: 10.1007/s13353-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | | | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Israa Hussein Mohammed
- College of Nursing, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Feng J, Fang J. HOXC6-mediated transcriptional activation of ENO2 promotes oral squamous cell carcinoma progression through the Warburg effect. J Biochem Mol Toxicol 2024; 38:e23752. [PMID: 38923759 DOI: 10.1002/jbt.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.
Collapse
Affiliation(s)
- Jing Feng
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jin Fang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
3
|
Li Y, Jiang J, Wang X, Cao Y, Tang L, Song X, Huang F, Li M, Chen F, Wan H, Ye S. Engrailed 2 serves as a master regulator of the super-enhancer in the TNC gene locus in non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1442-1455. [PMID: 37987507 DOI: 10.1002/tox.24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.
Collapse
Affiliation(s)
- Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Jie Jiang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Sujuan Ye
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Zhao J, Jia X, Li Q, Zhang H, Wang J, Huang S, Hu Z, Li C. Genomic and transcriptional characterization of early esophageal squamous cell carcinoma. BMC Med Genomics 2023; 16:153. [PMID: 37393256 PMCID: PMC10315050 DOI: 10.1186/s12920-023-01588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous cancer that lacks comprehensive understanding and effective treatment. Although multi-omics study has revealed features and underlying drivers of advanced ESCC, research on molecular characteristics of the early stage ESCC is quite limited. MATERIALS AND METHODS We presented characteristics of genomics and transcriptomics in 10 matched pairs of tumor and normal tissues of early ESCC patients in the China region. RESULTS We identified the specific patterns of cancer gene mutations and copy number variations. We also found a dramatic change in the transcriptome, with more than 4,000 genes upregulated in cancer. Among them, more than one-third of HOX family genes were specifically and highly expressed in early ESCC samples of China and validated by RT-qPCR. Gene regulation network analysis indicated that alteration of Hox family genes promoted the proliferation and metabolism remodeling of early ESCC. CONCLUSIONS We characterized the genomic and transcriptomic landscape of 10 paired normal adjacent and early ESCC tissues in the China region, and provided a new perspective to understand the development of ESCC and insight into potential prevention and diagnostic targets for the management of early ESCC in China.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiaojuan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, , Gansu Province, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Caiping Li
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
5
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
6
|
Wang J, Zhang ZY, Jiang J, Tang L, Wang XY, Wang Z, Yang XL, Yu XL, Huang CC, Chen F, Ye SJ, Wan H. KDM2A plays a dual role in regulating the expression of malignancy-related genes in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2022; 624:53-58. [DOI: 10.1016/j.bbrc.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
|
7
|
Chen YR, Li HN, Zhang LJ, Zhang C, He JG. Protein Arginine Methyltransferase 5 Promotes Esophageal Squamous Cell Carcinoma Proliferation and Metastasis via LKB1/AMPK/mTOR Signaling Pathway. Front Bioeng Biotechnol 2021; 9:645375. [PMID: 34124017 PMCID: PMC8193860 DOI: 10.3389/fbioe.2021.645375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the eighth most common cancer in the world. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes symmetric and asymmetric methylation on arginine residues of histone and non-histone proteins, is overexpressed in many cancers. However, whether or not PRMT5 participates in the regulation of ESCC remains largely unclear. Methods: PRMT5 mRNA and protein expression in ESCC tissues and cell lines were examined by RT-PCR, western blotting, and immunohistochemistry assays. Cell proliferation was examined by RT-PCR, western blotting, immunohistochemistry assays, MTT, and EdU assays. Cell apoptosis and cell cycle were examined by RT-PCR, western blotting, immunohistochemistry assays, and flow cytometry. Cell migration and invasion were examined by RT-PCR, western blotting, immunohistochemistry assays, and wound-healing and transwell assays. Tumor volume, tumors, and mouse weight were measured in different groups. Lung tissues with metastatic foci, the number of nodules, and lung/total weight were measured in different groups. Results: In the present study, the PRMT5 expression level was dramatically upregulated in ESCC clinical tissues as well as ESCC cell lines (ECA109 and KYSE150). Furthermore, knocking down PRMT5 obviously suppressed cell migration, invasion, proliferation, and cell arrest in G1 phase and promoted cell apoptosis in ESCC cells. Meanwhile, downregulating PRMT5 also increased the expression levels of Bax, caspase-3, and caspase-9, while expression levels of Bax-2, MMP-2, MMP-9, and p21 were decreased, which are members of the cyclin-dependent kinase family. Furthermore, knocking down PRMT5 could increase the expression of LKB1 and the phosphorylation (p)-AMPK expression and decrease the p-mTOR level. Additionally, overexpression of LKB1 could reveal anti-tumor effects in ESCC cell lines by inhibiting ESCC cell, migration, invasion, and proliferation and accelerating cell apoptosis. Besides, upregulating LKB1 expression could increase the levels of Bax, caspase-3, and caspase-9 and weaken the levels of Bax-2, MMP-2, and MMP-9. Moreover, knocking down PRMT5 could weaken the tumor growth and lung metastasis in vivo with upregulating the LKB1 expression and the p-AMPK level and downregulating the p-mTOR expression. Conclusion: PRMT5 may act as a tumor-inducing agent in ESCC by modulating LKB1/AMPK/mTOR pathway signaling.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Hua-Ni Li
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Lian-Jun Zhang
- Department of Critical Care Medicine, Heze Municipal Hospital, Heze, China
| | - Chong Zhang
- Magnetic Resonance Room, Heze Municipal Hospital, Heze, China
| | - Jin-Guang He
- Department of Oncology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
8
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
9
|
Long X, You G, Wu Q, Zhou Y, Yu F, Xiao Y, Deng S, Song F, Huang J, Tian M. Abnormal expression of homeobox c6 in the atherosclerotic aorta and its effect on proliferation and migration of rat vascular smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:935-943. [PMID: 32785574 DOI: 10.1093/abbs/gmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Homeobox c6 (Hoxc6) affects the proliferation, migration, and infiltration of malignant tumor cells; however, the effect of Hoxc6 on atherosclerosis (AS) as well as the proliferation and migration of vascular smooth muscle cells (VSMCs), which play a role in promoting AS, has not yet been well clarified. In the present study, we tested the hypothesis that Hoxc6 affects the proliferation and migration of rat VSMCs, and hence is involved in AS. The results showed that the expression of Hoxc6 mRNA and protein was higher in normal rat aortic wall than in the myocardium. Subsequently, a rat model of AS was established by high-fat feeding for 2 months. The expression of Hoxc6 mRNA and protein was increased significantly in AS lesions, while the expression of p53 protein was decreased and that of proliferating cell nuclear antigen (PCNA) was increased. Moreover, not only the proliferation and mobility of cells in normal culture were decreased, but also the proliferation was stimulated by oxidized low-density lipoprotein, which was decreased after downregulation of Hoxc6 expression in VSMCs in rat. Consecutively, the expression of PCNA protein was decreased, while that of p53 was increased. These results indicated that Hoxc6 is probably involved in AS via p53 and PCNA by affecting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ganhua You
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
10
|
Cao Y, Wang X, Tang L, Li Y, Song X, Liu X, Li M, Chen F, Wan H. Engrailed-2 promotes a malignant phenotype of esophageal squamous cell carcinoma through upregulating the expression of pro-oncogenic genes. PeerJ 2020; 8:e8662. [PMID: 32117645 PMCID: PMC7036277 DOI: 10.7717/peerj.8662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Background A number of homeobox genes have been implicated in the development of various cancers. However, the role of engrailed 2 (EN2), a member of the homeobox gene superfamily, in esophageal squamous cell carcinoma (ESCC) remains unknown. Methods The expression of EN2 was examined using quantitative real-time PCR and immunohistochemistry. A stable cell line was established to express exogenous EN2 using a lentivirus system. The malignant phenotype was analyzed with proliferation, clonogenicity, wound-healing and invasion assays. The CRISPR/Cas9 system was adopted to deplete endogenous EN2. RNA profiling was performed using gene expression microarray. The ShRNA-mediated method was used to knock down the expression of SPARC. The structure-function relationship was determined using site-directed mutagenesis. Results EN2 is highly expressed in ESCC. The malignant phenotype of the ESCC cell line was amplified by an overexpression of EN2 but was attenuated by a disruption of EN2. RNA profiling analysis revealed that distinct sets of genes were modulated by the expression of EN2 in various ESCC cell lines and oncogenes were among these. EN2 greatly increased the expression of SPARC in Eca109. Site-directed mutagenesis revealed that the induction of SPARC was closely correlated with the protumor function of EN2. ShRNA-mediated knockdown of SPARC attenuated the malignant phenotype of EN2-infected cells. These data suggest that SPARC is crucial for mediating the protumor function of EN2. Discussion EN2 has an oncogenic function in ESCC that is mediated by upregulating the expression of pro-oncogenic genes downstream. EN2 may potentially act as a diagnostic marker or therapeutic target for ESCC treatment in the future.
Collapse
Affiliation(s)
- Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Liu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|