1
|
Yan R, Geng Y, Jia Y, Xiang C, Zhou X, Hu G. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1265641. [PMID: 37828930 PMCID: PMC10565954 DOI: 10.3389/fpls.2023.1265641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Introduction The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.
Collapse
Affiliation(s)
- Rongrong Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuhuan Jia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunlei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guoxiong Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Marchesini A, Silverj A, Torre S, Rota-Stabelli O, Girardi M, Passeri I, Fracasso I, Sebastiani F, Vernesi C. First genome-wide data from Italian European beech (Fagus sylvatica L.): Strong and ancient differentiation between Alps and Apennines. PLoS One 2023; 18:e0288986. [PMID: 37471380 PMCID: PMC10358878 DOI: 10.1371/journal.pone.0288986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The European beech (Fagus sylvatica L.) is one of the most widespread forest trees in Europe whose distribution and intraspecific diversity has been largely shaped by repeated glacial cycles. Previous studies, mainly based on palaeobotanical evidence and a limited set of chloroplast and nuclear genetic markers, highlighted a complex phylogeographic scenario, with southern and western Europe characterized by a rather heterogeneous genetic structure, as a result of recolonization from different glacial refugia. Despite its ecological and economic importance, the genome of this broad-leaved tree has only recently been assembled, and its intra-species genomic diversity is still largely unexplored. Here, we performed whole-genome resequencing of nine Italian beech individuals sampled from two stands located in the Alpine and Apennine mountain ranges. We investigated patterns of genetic diversity at chloroplast, mitochondrial and nuclear genomes and we used chloroplast genomes to reconstruct a temporally-resolved phylogeny. Results allowed us to test European beech differentiation on a whole-genome level and to accurately date their divergence time. Our results showed comparable, relatively high levels of genomic diversity in the two populations and highlighted a clear differentiation at chloroplast, mitochondrial and nuclear genomes. The molecular clock analysis indicated an ancient split between the Alpine and Apennine populations, occurred between the Günz and the Riss glaciations (approximately 660 kyrs ago), suggesting a long history of separation for the two gene pools. This information has important conservation implications in the context of adaptation to ongoing climate changes.
Collapse
Affiliation(s)
- Alexis Marchesini
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
- Research Institute on Terrestrial Ecosystems (IRET), The National Research Council of Italy (CNR), Porano (Terni), Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Matteo Girardi
- Conservation Genomics Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Iacopo Passeri
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| |
Collapse
|
3
|
Fu K, Lu L, Ding M, Yang Z, Shen H, Shi S. The characteristic of the complete chloroplast genome of Lithocarpus konishii (Fagaceae), a rare and endemic species in South China. Mitochondrial DNA B Resour 2023; 8:686-690. [PMID: 37359090 PMCID: PMC10286688 DOI: 10.1080/23802359.2023.2226259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Lithocarpus konishii, a rare species endemic to islands in South China, was evaluated as a vulnerable species (VU) by the 'China Species Red List.' Here, we first presented the complete chloroplast genome sequence of L. konishii. The chloroplast genome was 161,059 bp in length with 36.76% GC content, containing a small single-copy region (SSC, 18,967 bp), a large single-copy region (LSC, 90,250 bp), and a pair of inverted repeats (IRs, 25,921 bp each). A total of 139 genes were predicted, including 87 protein-coding genes (CDS), 8 rRNAs, and 44 tRNAs. Based on the concatenated shared unique CDS sequence dataset, maximum-likelihood and Bayesian inference methods were used to build the phylogenetic trees of 18 species from the Fagaceae family. Results indicated that L. konishii is closely related to L. longnux and L. pachyphyllus var. fruticosus, and forms a monophyly of the subfamily Castaneoideae with Castanopsis and Castanea. This study provides a theoretical basis for the conservation genomics of this endangered plant.
Collapse
Affiliation(s)
- Keyi Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linjing Lu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | | | - Zhilai Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hongkang Shen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shi Shi
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Gaikwad AB, Kaila T, Maurya A, Kumari R, Rangan P, Wankhede DP, Bhat KV. The chloroplast genome of black pepper ( Piper nigrum L.) and its comparative analysis with related Piper species. FRONTIERS IN PLANT SCIENCE 2023; 13:1095781. [PMID: 36714762 PMCID: PMC9878596 DOI: 10.3389/fpls.2022.1095781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Piper nigrum, also known as black pepper, is an economically and ecologically important crop of the genus Piper. It has been titled as the king of spices due to its wide consumption throughout the world. In the present investigation, the chloroplast genome of P. nigrum has been assembled from a whole genome sequence by integrating the short and long reads generated through Illumina and PacBio platforms, respectively. The chloroplast genome was observed to be 161,522 bp in size, having a quadripartite structure with a large single copy (LSC) region of 89,153 bp and a small single copy (SSC) region of 18,255 bp separated by a copy of inverted repeats (IRs), each 27,057 bp in length. Taking into consideration all the duplicated genes, a total of 131 genes were observed, which included 81 protein-coding genes, 37 tRNAs, 4 rRNAs, and 1 pseudogene. Individually, the LSC region consisted of 83 genes, the SSC region had 13 genes, and 18 genes were present in each IR region. Additionally, 216 SSRs were detected and 11 of these were validated through amplification in 12 species of Piper. The features of the chloroplast genome have been compared with those of the genus Piper. Our results provide useful insights into evolutionary and molecular studies of black pepper which will contribute to its further genetic improvement and breeding.
Collapse
Affiliation(s)
- Ambika Baldev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Tanvi Kaila
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ratna Kumari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Parimalan Rangan
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. V. Bhat
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
5
|
Worth JRP, Shitara T, Kitamura K, Kikuchi S, Kanetani S, Matsui T, Uchiyama K, Tomaru N. Low‐elevation warm‐edge
Fagus crenata
populations in the core of the species range are glacial relicts with high conservation value. Ecol Res 2022. [DOI: 10.1111/1440-1703.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- James R. P. Worth
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute Forest Research and Management Organization Matsunosato, Ibaraki Japan
| | - Takuto Shitara
- Institute of Agriculture Tokyo University of Agriculture and Technology Fuchu‐shi, Tokyo Japan
| | - Keiko Kitamura
- Hokkaido Research Centre, Forestry and Forest Products Research Institute Forest Research and Management Organization Sapporo, Hokkaido Japan
| | - Satoshi Kikuchi
- Hokkaido Research Centre, Forestry and Forest Products Research Institute Forest Research and Management Organization Sapporo, Hokkaido Japan
| | - Seiichi Kanetani
- Kyushu Research Center Forestry and Forest Products Research Institute Chuo‐ku, Kumamoto Japan
| | - Tetsuya Matsui
- Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute Forest Research and Management Organization Matsunosato, Ibaraki Japan
- Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba, Ibaraki Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute Forest Research and Management Organization Matsunosato, Ibaraki Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences Nagoya University Chikusa‐ku, Nagoya Japan
| |
Collapse
|
6
|
Takahashi M, Goto S, Fukuda Y, Watanabe A. Utility of chloroplast
DNA
haplotype data for ecological restoration using
Fagus crenata
seedlings in case of incomplete seed source information availability. Ecol Res 2022. [DOI: 10.1111/1440-1703.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Makoto Takahashi
- Breeding Department, Forest Tree Breeding Center Forestry and Forest Products Research Institute Ibaraki Japan
| | - Susumu Goto
- Education and Research Center, The University of Tokyo Forests Graduate School of Agricultural and Life Sciences, University of Tokyo Bunko‐ku Tokyo Japan
| | - Yoko Fukuda
- Hokkaido Regional Breeding Office, Forest Tree Breeding Center Forestry and Forest Products Research Institute, Midori‐Machi Ebetsu Japan
| | | |
Collapse
|
7
|
Jiang C, Fan W, Chen L, Gan X. Complete chloroplast genome sequence of Fagus hayatae Palib. (Fagaceae). Mitochondrial DNA B Resour 2022; 7:944-945. [PMID: 35692643 PMCID: PMC9176376 DOI: 10.1080/23802359.2022.2080015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Complete chloroplast genome (cpDNA) sequence of Fagus hayatae Palib. is yet to be reported, and the phylogenetic position of this species is still under debate. In this study, the complete cpDNA sequence of F. hayatae was determined from Illumina NovaSeq pair-end sequencing data. Results revealed that it has a sequence length of 158,360 bp and contains 131 annotated genes, which consist of 83 protein-coding genes, 40 tRNA genes, and eight rRNA genes. The phylogenetic analysis of the complete cpDNA sequence indicates that Fagus represents a monophyletic clade within Fagaceae. The species relatedness between F. hayatae and F. engleriana is relatively close.
Collapse
Affiliation(s)
- Chaoyang Jiang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Wenqian Fan
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Lijun Chen
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Xiaohong Gan
- College of Life Sciences, China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
8
|
Complete Chloroplast Genome Sequence of Fagus longipetiolata Seemen (Fagaceae): Genome Structure, Adaptive Evolution, and Phylogenetic Relationships. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010092. [PMID: 35054485 PMCID: PMC8778281 DOI: 10.3390/life12010092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023]
Abstract
Fagus longipetiolata Seemen is a deciduous tree of the Fagus genus in Fagaceae, which is endemic to China. In this study, we successfully sequenced the cp genome of F. longipetiolata, compared the cp genomes of the Fagus genus, and reconstructed the phylogeny of Fagaceae. The results showed that the cp genome of F. longipetiolata was 158,350 bp, including a pair of inverted repeat (IRA and IRB) regions with a length of 25,894 bp each, a large single-copy (LSC) region of 87,671 bp, and a small single-copy (SSC) region of 18,891 bp. The genome encoded 131 unique genes, including 81 protein-coding genes, 37 transfer RNA genes (tRNAs), 8 ribosomal RNA genes (rRNAs), and 5 pseudogenes. In addition, 33 codons and 258 simple sequence repeats (SSRs) were identified. The cp genomes of Fagus were relatively conserved, especially the IR regions, which showed the best conservation, and no inversions or rearrangements were found. The five regions with the largest variations were the rps12, rpl32, ccsA, trnW-CCA, and rps3 genes, which spread over in LSC and SSC. The comparison of gene selection pressure indicated that purifying selection was the main selective pattern maintaining important biological functions in Fagus cp genomes. However, the ndhD, rpoA, and ndhF genes of F. longipetiolata were affected by positive selection. Phylogenetic analysis revealed that F. longipetiolata and F. engleriana formed a close relationship, which partially overlapped in their distribution in China. Our analysis of the cp genome of F. longipetiolata would provide important genetic information for further research into the classification, phylogeny and evolution of Fagus.
Collapse
|
9
|
Ulaszewski B, Meger J, Mishra B, Thines M, Burczyk J. Complete Chloroplast Genomes of Fagus sylvatica L. Reveal Sequence Conservation in the Inverted Repeat and the Presence of Allelic Variation in NUPTs. Genes (Basel) 2021; 12:1357. [PMID: 34573338 PMCID: PMC8468245 DOI: 10.3390/genes12091357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Growing amounts of genomic data and more efficient assembly tools advance organelle genomics at an unprecedented scale. Genomic resources are increasingly used for phylogenetic analyses of many plant species, but are less frequently used to investigate within-species variability and phylogeography. In this study, we investigated genetic diversity of Fagus sylvatica, an important broadleaved tree species of European forests, based on complete chloroplast genomes of 18 individuals sampled widely across the species distribution. Our results confirm the hypothesis of a low cpDNA diversity in European beech. The chloroplast genome size was remarkably stable (158,428 ± 37 bp). The polymorphic markers, 12 microsatellites (SSR), four SNPs and one indel, were found only in the single copy regions, while inverted repeat regions were monomorphic both in terms of length and sequence, suggesting highly efficient suppression of mutation. The within-individual analysis of polymorphisms showed >9k of markers which were proportionally present in gene and non-gene areas. However, an investigation of the frequency of alternate alleles revealed that the source of this diversity originated likely from nuclear-encoded plastome remnants (NUPTs). Phylogeographic and Mantel correlation analysis based on the complete chloroplast genomes exhibited clustering of individuals according to geographic distance in the first distance class, suggesting that the novel markers and in particular the cpSSRs could provide a more detailed picture of beech population structure in Central Europe.
Collapse
Affiliation(s)
- Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| | - Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (B.M.); (M.T.)
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60483 Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (B.M.); (M.T.)
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60483 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| |
Collapse
|
10
|
Yang J, Takayama K, Youn JS, Pak JH, Kim SC. Plastome Characterization and Phylogenomics of East Asian Beeches with a Special Emphasis on Fagus multinervis on Ulleung Island, Korea. Genes (Basel) 2020; 11:E1338. [PMID: 33198274 PMCID: PMC7697516 DOI: 10.3390/genes11111338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Beech trees of the genus Fagus (Fagaceae) are monoecious and distributed in the Northern Hemisphere. They represent an important component of mixed broad-leaved evergreen-deciduous forests and are an economically important source of timber. Despite their ecological and economical importance, however, little is known regarding the overall plastome evolution among Fagus species in East Asia. In particular, the taxonomic position and status of F. multinervis, a beech species endemic to Ulleung Island of Korea, remains unclear even today. Therefore, in this study, we characterized four newly completed plastomes of East Asian Fagus species (one accession each of F. crenata and F. multinervis and two accessions of F. japonica). Moreover, we performed phylogenomic analyses comparing these four plastomes with F. sylvatica (European beech) plastome. The four plastomes were highly conserved, and their size ranged from 158,163 to 158,348 base pair (bp). The overall GC content was 37.1%, and the sequence similarity ranged from 99.8% to 99.99%. Codon usage patterns were similar among species, and 7 of 77 common protein-coding genes were under positive selection. Furthermore, we identified five highly variable hotspot regions of the Fagus plastomes (ccsA/ndhD, ndhD/psaC, ndhF/rpl32, trnS-GCU/trnG-UCC, and ycf1). Phylogenetic analysis revealed the monophyly of Fagus as well as early divergence of the subgenus Fagus and monophyletic Engleriana. Finally, phylogenetic results supported the taxonomic distinction of F. multinervis from its close relatives F. engleriana and F. japonica. However, the sister species and geographic origin of F. multinervis on Ulleung Island could not be determined.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Jin-Suk Youn
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
11
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
12
|
Mader M, Liesebach H, Liesebach M, Kersten B. The complete chloroplast genome sequence of Fagus sylvatica L. (Fagaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1612712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| |
Collapse
|