1
|
Tang R, Zhu Y, Yang S, Wang F, Chen G, Chen J, Zhao K, Liu Z, Peng D. Genome-Wide Identification and Analysis of WRKY Gene Family in Melastoma dodecandrum. Int J Mol Sci 2023; 24:14904. [PMID: 37834352 PMCID: PMC10573167 DOI: 10.3390/ijms241914904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
WRKY is one of the largest transcription factor families in plants and plays an important role in plant growth and development as well as in abiotic and biological stresses. However, there is little information about the WRKY family in Melastoma dodecandrum. In this study, 126 WRKY members were identified in M. dodecandrum. According to phylogenetic analysis, they were divided into three major groups, and group II was further divided into five subgroups. MedWRKY genes were unevenly distributed on 12 chromosomes. Additionally, the gene structure and sequence composition were similar within the same group and differed between groups, suggesting their functional diversity. The promoter sequence analysis identified a number of cis-acting elements related to plant growth and development, stress response, and secondary metabolite synthesis in the WRKY gene family. The collinearity analysis showed that gene replication events were the main driving force of MedWRKY gene evolution. The transcriptome data and RT-qPCR analysis suggested that MedWRKY genes had higher expression in the roots and ripe fruit of M. dodecandrum. In short, this paper lays a foundation for further study of the functions and molecular mechanism of M. dodecandrum WRKY gene family.
Collapse
Affiliation(s)
- Ruonan Tang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Yunjun Zhu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Songmin Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Fei Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.T.); (Y.Z.); (S.Y.); (F.W.); (G.C.); (J.C.); (K.Z.); (Z.L.)
| |
Collapse
|
2
|
Bhuker A, Malik A, Punia H, McGill C, Sofkova-Bobcheva S, Mor VS, Singh N, Ahmad A, Mansoor S. Probing the Phytochemical Composition and Antioxidant Activity of Moringa oleifera under Ideal Germination Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3010. [PMID: 37631221 PMCID: PMC10459117 DOI: 10.3390/plants12163010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023]
Abstract
Moringa oleifera is a rich source of polyphenols whose contents and profile may vary according to environmental conditions, harvest season, and plant tissue. The present study aimed to characterize the profile of phenolic compounds in different tissues of M. oleifera grown under different temperatures (25, 30, and 35 °C), using HPLC/MS, as well as their constituent phytochemicals and in vitro antioxidant activities. The in vitro antioxidant activity of the extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylenebenzothiozoline-6-sulfonicacid (ABTS), and ferric-reducing antioxidant power (FRAP) methods. The polyphenolic compounds were mainly found in the leaves at 30 °C. UPLC/QTOF-MS allowed for the identification of 34 polyphenolic components in seedlings, primarily consisting of glucosides, phenols, flavonoids, and methoxy flavones. At 30 °C, the specific activities of antioxidative enzymes were the highest in leaves, followed by seedlings and then seeds. The leaf and seed extracts also exhibited a greater accumulation of proline, glycine betaine, and antioxidants, such as ascorbic acid, and carotenoids, as measured by the inhibition of ROS production. We found that changes in the expression levels of the validated candidate genes Cu/Zn-SOD, APX, GPP, and TPS lead to significant differences in the germination rate and biochemical changes. These findings demonstrate that M. oleifera plants have high concentrations of phytochemicals and antioxidants, making them an excellent choice for further research to determine their use as health-promoting dietary supplements.
Collapse
Affiliation(s)
- Axay Bhuker
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Department of Agriculture, School of Agriculture, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Department of Sciences, Chandigarh School of Business, Chandigarh Group of Colleges, Jhanjeri 140307, Mohali, India
| | - Craig McGill
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Virender Singh Mor
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Nirmal Singh
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Wang C, Ye D, Li Y, Hu P, Xu R, Wang X. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea ( Rhododendron simsii). Front Genet 2023; 14:1172321. [PMID: 37234867 PMCID: PMC10206045 DOI: 10.3389/fgene.2023.1172321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
WRKY transcription factors have been demonstrated to influence the anthocyanin biosynthesis in many plant species. However, there is limited knowledge about the structure and function of WRKY genes in the major ornamental plant azalea (Rhododendron simsii). In this study, we identified 57 RsWRKY genes in the R. simsii genome and classified them into three main groups and several subgroups based on their structural and phylogenetic characteristics. Comparative genomic analysis suggested WRKY gene family has significantly expanded during plant evolution from lower to higher species. Gene duplication analysis indicated that the expansion of the RsWRKY gene family was primarily due to whole-genome duplication (WGD). Additionally, selective pressure analysis (Ka/Ks) suggested that all RsWRKY duplication gene pairs underwent purifying selection. Synteny analysis indicated that 63 and 24 pairs of RsWRKY genes were orthologous to Arabidopsis thaliana and Oryza sativa, respectively. Furthermore, RNA-seq data was used to investigate the expression patterns of RsWRKYs, revealing that 17 and 9 candidate genes may be associated with anthocyanin synthesis at the bud and full bloom stages, respectively. These findings provide valuable insights into the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species and lay the foundation for future functional studies of WRKY genes.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dan Ye
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, China
| | - Peiling Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Run Xu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Genome-Wide Identification and Characterization of the Oat ( Avena sativa L.) WRKY Transcription Factor Family. Genes (Basel) 2022; 13:genes13101918. [PMID: 36292803 PMCID: PMC9601435 DOI: 10.3390/genes13101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022] Open
Abstract
The WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat (Avena sativa L.) have been conducted to date. The recently published complete genome sequence of oat enables the systematic analysis of the AsWRKYs. Based on a genome-wide study of oat, we identified 162 AsWRKYs that were unevenly distributed across 21 chromosomes; a phylogenetic tree of WRKY domains divided these genes into three groups (I, II, and III). We also analyzed the gene duplication events and identified a total of 111 gene pairs that showed strong purifying selection during the evolutionary process. Surprisingly, almost all genes evolved after the completion of subgenomic differentiation of hexaploid oat. Further studies on the functional analysis indicated that AsWRKYs were widely involved in various biological processes. Notably, expression patterns of 16 AsWRKY genes revealed that the response of AsWRKYs were affected by stress level and time. In conclusion, this study provides a reference for further analysis of the role of WRKY transcription factors in species evolution and functional differentiation.
Collapse
|
5
|
Wang C, Hao X, Wang Y, Maoz I, Zhou W, Zhou Z, Kai G. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2022; 9:uhac099. [PMID: 35795387 PMCID: PMC9250654 DOI: 10.1093/hr/uhac099] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Camptothecin is a chemotherapeutic drug widely used to treat various cancers. Ophiorrhiza pumila is an ideal plant model for the study of camptothecin production, with various advantages for studying camptothecin biosynthesis and regulation. The DNA-binding WRKY transcription factors have a key regulatory role in secondary metabolite biosynthesis in plants. However, little is currently known about their involvement in camptothecin biosynthesis in O. pumila. We identified 46 OpWRKY genes unevenly distributed on the 11 chromosomes of O. pumila. Phylogenetic and multiple sequence alignment analyses divided the OpWRKY proteins into three subfamilies. Based on spatial expression and co-expression, we targeted the candidate gene OpWRKY6. Overexpression of OpWRKY6 significantly reduced the accumulation of camptothecin compared with the control. Conversely, camptothecin accumulation increased in OpWRKY6 knockout lines. Further biochemical assays showed that OpWRKY6 negatively regulates camptothecin biosynthesis from both the iridoid and shikimate pathways by directly downregulating the gene expression of OpGES, Op10HGO, Op7DLH, and OpTDC. Our data provide direct evidence for the involvement of WRKYs in the regulation of camptothecin biosynthesis and offer valuable information for enriching the production of camptothecin in plant systems.
Collapse
Affiliation(s)
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Wei Zhou
- Corresponding authors. E-mail: , ,
| | | | | |
Collapse
|
6
|
Genome-wide survey of sugar beet (Beta vulgaris subsp. vulgaris) Dof transcription factors reveals structural diversity, evolutionary expansion and involvement in taproot development and biotic stress response. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Wang H, Li T, Li W, Wang W, Zhao H. Identification and analysis of Chrysanthemum nankingense NAC transcription factors and an expression analysis of OsNAC7 subfamily members. PeerJ 2021; 9:e11505. [PMID: 34123596 PMCID: PMC8164415 DOI: 10.7717/peerj.11505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022] Open
Abstract
NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play a vital role in plant growth and development, as well as in plant response to biotic and abiotic stressors (Duan et al., 2019; Guerin et al., 2019). Chrysanthemum is a plant with strong stress resistance and adaptability; therefore, a systematic study of NAC TFs in chrysanthemum is of great significance for plant breeding. In this study, 153 putative NAC TFs were identified based on the Chrysanthemum nankingense genome. According to the NAC family in Arabidopsis and rice, a rootless phylogenetic tree was constructed, in which the 153 CnNAC TFs were divided into two groups and 19 subfamilies. Moreover, the expression levels of 12 CnNAC TFs belonging to the OsNAC7 subfamily were analyzed in C. nankingense under osmotic and salt stresses, and different tissues were tested during different growth periods. The results showed that these 12 OsNAC7 subfamily members were involved in the regulation of root and stem growth, as well as in the regulation of drought and salt stresses. Finally, we investigated the function of the CHR00069684 gene, and the results showed that CHR00069684 could confer improved salt and low temperature resistance, enhance ABA sensitivity, and lead to early flowering in tobacco. It was proved that members of the OsNAC7 subfamily have dual functions including the regulation of resistance and the mediation of plant growth and development. This study provides comprehensive information on analyzing the function of CnNAC TFs, and also reveals the important role of OsNAC7 subfamily genes in response to abiotic stress and the regulation of plant growth. These results provide new ideas for plant breeding to control stress resistance and growth simultaneously.
Collapse
Affiliation(s)
- Hai Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tong Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wang Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huien Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, China
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|