1
|
Jofré-Madariaga D, Aguilera Moya MA, Alves-de-Souza C, Arias RM, Gutow L, Jeldres Polanco RA, Macaya EC, Kappes MM, Ortiz Arancibia LN, Pino O, Rech S, Rothäusler E, Harrod C, Thiel M. Non-indigenous species and their realized niche in tidepools along the South-East Pacific coast. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106541. [PMID: 38852493 DOI: 10.1016/j.marenvres.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.
Collapse
Affiliation(s)
- David Jofré-Madariaga
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Facultad de Ciencias del Mar y Recursos Biológicos, Univ. de Antofagasta, Antofagasta, Chile
| | - Moisés A Aguilera Moya
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Rene Matías Arias
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Lars Gutow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ricardo Antonio Jeldres Polanco
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Erasmo C Macaya
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Martín Munizaga Kappes
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Leslie Nicole Ortiz Arancibia
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Oscar Pino
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Sabine Rech
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Eva Rothäusler
- Centro de Investigaciones Costeras (CIC - UDA), Universidad de Atacama, Copiapó, Chile
| | - Chris Harrod
- Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Instituto de Ciencias Naturales Alexander Von Humboldt. Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Martin Thiel
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
| |
Collapse
|
2
|
Rivera R, Escribano R, González CE, Pérez-Aragón M. Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case. Sci Rep 2023; 13:3158. [PMID: 36823290 PMCID: PMC9950369 DOI: 10.1038/s41598-023-29541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Predicting species distribution in the ocean has become a crucial task to assess marine ecosystem responses to ongoing climate change. In the Humboldt Current System (HCS), the endemic copepod Calanus chilensis is one of the key species bioindicator of productivity and water masses. Here we modeled the geographic distribution of Calanus chilensis for two bathymetric ranges, 0-200 and 200-400 m. For the 0-200 m layer, we used the Bayesian Additive Regression Trees (BART) method, whereas, for the 200-400 m layer, we used the Ensembles of Small Models (ESMs) method and then projected the models into two future scenarios to assess changes in geographic distribution patterns. The models were evaluated using the multi-metric approach. We identified that chlorophyll-a (0.34), Mixed Layer Depth (0.302) and salinity (0.36) explained the distribution of C. chilensis. The geographic prediction of the BART model revealed a continuous distribution from Ecuador to the southernmost area of South America for the 0-200 m depth range, whereas the ESM model indicated a discontinuous distribution with greater suitability for the coast of Chile for the 200-400 m depth range. A reduction of the distribution range of C. chilensis is projected in the future. Our study suggests that the distribution of C. chilensis is conditioned by productivity and mesoscale processes, with both processes closely related to upwelling intensity. These models serve as a tool for proposing indicators of changes in the ocean. We further propose that the species C. chilensis is a high productivity and low salinity indicator at the HCS. We recommend further examining multiple spatial and temporal scales for stronger inference.
Collapse
Affiliation(s)
- Reinaldo Rivera
- Millennium Institute of Oceanography (IMO), University of Concepcion, 4030000, Concepcion, Chile.
| | - Rubén Escribano
- grid.5380.e0000 0001 2298 9663Millennium Institute of Oceanography (IMO), University of Concepcion, 4030000 Concepcion, Chile ,grid.5380.e0000 0001 2298 9663Department of Oceanography, Faculty of Natural and Oceanographic Sciences, University of Concepcion, 4030000 Concepcion, Chile
| | - Carolina E. González
- grid.5380.e0000 0001 2298 9663Millennium Institute of Oceanography (IMO), University of Concepcion, 4030000 Concepcion, Chile
| | - Manuela Pérez-Aragón
- grid.5380.e0000 0001 2298 9663Millennium Institute of Oceanography (IMO), University of Concepcion, 4030000 Concepcion, Chile ,grid.5380.e0000 0001 2298 9663Department of Oceanography, Faculty of Natural and Oceanographic Sciences, University of Concepcion, 4030000 Concepcion, Chile
| |
Collapse
|
4
|
Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions. Biol Invasions 2020; 22:3195-3222. [PMID: 32837266 PMCID: PMC7429141 DOI: 10.1007/s10530-020-02321-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/20/2020] [Indexed: 01/17/2023]
Abstract
Widespread non-native species tend to demonstrate an apparent lack of selectivity in habitat requirements, feeding regimes, and reproductive needs, while displaying a tendency to thrive in human-modified habitats. The high phenotypic plasticity typical of sessile, substrate-attached marine species may enhance their chances of survival and spread in a new region. Anthropogenic activities have changed marine habitats over a wide range of phenomena, including water temperature, community species composition, and the types of available substrates, creating new physical and biotic regimes that may contribute to the potential for successful species introduction. Here we examine ten species of sea anemones that have been introduced outside of their native range, and elucidate specific characteristics that are common among globally introduced sea anemones. Various life history strategies enable these species to survive and flourish through transport, introduction, establishment and spread, leading to the successful colonization of a new geographic area. Considering life history strategies and weighing of vector potential, we suggest conditions that facilitate introduction of these species, and identify species of sea anemones that may be introduced in the future in the face of changing climate and increased anthropogenic activities.
Collapse
|