1
|
Kim BS, Cho M, Chung GE, Lee J, Kang HY, Yoon D, Cho WS, Lee JC, Bae JH, Kong HJ, Kim S. Density clustering-based automatic anatomical section recognition in colonoscopy video using deep learning. Sci Rep 2024; 14:872. [PMID: 38195632 PMCID: PMC10776865 DOI: 10.1038/s41598-023-51056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Recognizing anatomical sections during colonoscopy is crucial for diagnosing colonic diseases and generating accurate reports. While recent studies have endeavored to identify anatomical regions of the colon using deep learning, the deformable anatomical characteristics of the colon pose challenges for establishing a reliable localization system. This study presents a system utilizing 100 colonoscopy videos, combining density clustering and deep learning. Cascaded CNN models are employed to estimate the appendix orifice (AO), flexures, and "outside of the body," sequentially. Subsequently, DBSCAN algorithm is applied to identify anatomical sections. Clustering-based analysis integrates clinical knowledge and context based on the anatomical section within the model. We address challenges posed by colonoscopy images through non-informative removal preprocessing. The image data is labeled by clinicians, and the system deduces section correspondence stochastically. The model categorizes the colon into three sections: right (cecum and ascending colon), middle (transverse colon), and left (descending colon, sigmoid colon, rectum). We estimated the appearance time of anatomical boundaries with an average error of 6.31 s for AO, 9.79 s for HF, 27.69 s for SF, and 3.26 s for outside of the body. The proposed method can facilitate future advancements towards AI-based automatic reporting, offering time-saving efficacy and standardization.
Collapse
Grants
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- 1711179421, RS-2021-KD000006 the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, and the Ministry of Food and Drug Safety)
- IITP-2023-2018-0-01833 the Ministry of Science and ICT, Korea under the Information Technology Research Center (ITRC) support program
Collapse
Affiliation(s)
- Byeong Soo Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Minwoo Cho
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Hae Yeon Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea
| | - Dan Yoon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Woo Sang Cho
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Korea
| | - Jung Ho Bae
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, Korea.
| | - Hyoun-Joong Kong
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, 03087, Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Artificial Intelligence Institute, Seoul National University, Research Park Building 942, 2 Fl., Seoul, 08826, Korea.
| |
Collapse
|
2
|
Zhu S, Gao J, Liu L, Yin M, Lin J, Xu C, Xu C, Zhu J. Public Imaging Datasets of Gastrointestinal Endoscopy for Artificial Intelligence: a Review. J Digit Imaging 2023; 36:2578-2601. [PMID: 37735308 PMCID: PMC10584770 DOI: 10.1007/s10278-023-00844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 09/23/2023] Open
Abstract
With the advances in endoscopic technologies and artificial intelligence, a large number of endoscopic imaging datasets have been made public to researchers around the world. This study aims to review and introduce these datasets. An extensive literature search was conducted to identify appropriate datasets in PubMed, and other targeted searches were conducted in GitHub, Kaggle, and Simula to identify datasets directly. We provided a brief introduction to each dataset and evaluated the characteristics of the datasets included. Moreover, two national datasets in progress were discussed. A total of 40 datasets of endoscopic images were included, of which 34 were accessible for use. Basic and detailed information on each dataset was reported. Of all the datasets, 16 focus on polyps, and 6 focus on small bowel lesions. Most datasets (n = 16) were constructed by colonoscopy only, followed by normal gastrointestinal endoscopy and capsule endoscopy (n = 9). This review may facilitate the usage of public dataset resources in endoscopic research.
Collapse
Affiliation(s)
- Shiqi Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Jingwen Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Minyue Yin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Chang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China.
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China.
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou , Jiangsu, 215000, China.
- Suzhou Clinical Center of Digestive Diseases, Suzhou, 215000, China.
| |
Collapse
|
3
|
Chang YY, Li PC, Chang RF, Chang YY, Huang SP, Chen YY, Chang WY, Yen HH. Development and validation of a deep learning-based algorithm for colonoscopy quality assessment. Surg Endosc 2022; 36:6446-6455. [PMID: 35132449 DOI: 10.1007/s00464-021-08993-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Quality indicators should be assessed and monitored to improve colonoscopy quality in clinical practice. Endoscopists must enter relevant information in the endoscopy reporting system to facilitate data collection, which may be inaccurate. The current study aimed to develop a full deep learning-based algorithm to identify and analyze intra-procedural colonoscopy quality indicators based on endoscopy images obtained during the procedure. METHODS A deep learning system for classifying colonoscopy images for quality assurance purposes was developed and its performance was assessed with an independent dataset. The system was utilized to analyze captured images and results were compared with those of real-world reports. RESULTS In total, 10,417 images from the hospital endoscopy database and 3157 from Hyper-Kvasir open dataset were utilized to develop the quality assurance algorithm. The overall accuracy of the algorithm was 96.72% and that of the independent test dataset was 94.71%. Moreover, 761 real-world reports and colonoscopy images were analyzed. The accuracy of electronic reports about cecal intubation rate was 99.34% and that of the algorithm was 98.95%. The agreement rate for the assessment of polypectomy rates using the electronic reports and the algorithm was 0.87 (95% confidence interval 0.83-0.90). A good correlation was found between the withdrawal time calculated using the algorithm and that entered by the physician (correlation coefficient r = 0.959, p < 0.0001). CONCLUSION We proposed a novel deep learning-based algorithm that used colonoscopy images for quality assurance purposes. This model can be used to automatically assess intra-procedural colonoscopy quality indicators in clinical practice.
Collapse
Affiliation(s)
- Yuan-Yen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- Artificial Intelligence Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Yao Chang
- Department of Colorectal Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Siou-Ping Huang
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yang-Yuan Chen
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Yen Chang
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsu-Heng Yen
- Artificial Intelligence Development Center, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Colorectal Surgery, Changhua Christian Hospital, Changhua, Taiwan.
- Division of Gastroenterology, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Electrical Engineering, Chung Yuan University, Taoyuan, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
4
|
Zhang Y, Wang Z, Zhang J, Wang C, Wang Y, Chen H, Shan L, Huo J, Gu J, Ma X. Deep learning model for classifying endometrial lesions. J Transl Med 2021; 19:10. [PMID: 33407588 PMCID: PMC7788977 DOI: 10.1186/s12967-020-02660-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hysteroscopy is a commonly used technique for diagnosing endometrial lesions. It is essential to develop an objective model to aid clinicians in lesion diagnosis, as each type of lesion has a distinct treatment, and judgments of hysteroscopists are relatively subjective. This study constructs a convolutional neural network model that can automatically classify endometrial lesions using hysteroscopic images as input. METHODS All histopathologically confirmed endometrial lesion images were obtained from the Shengjing Hospital of China Medical University, including endometrial hyperplasia without atypia, atypical hyperplasia, endometrial cancer, endometrial polyps, and submucous myomas. The study included 1851 images from 454 patients. After the images were preprocessed (histogram equalization, addition of noise, rotations, and flips), a training set of 6478 images was input into a tuned VGGNet-16 model; 250 images were used as the test set to evaluate the model's performance. Thereafter, we compared the model's results with the diagnosis of gynecologists. RESULTS The overall accuracy of the VGGNet-16 model in classifying endometrial lesions is 80.8%. Its sensitivity to endometrial hyperplasia without atypia, atypical hyperplasia, endometrial cancer, endometrial polyp, and submucous myoma is 84.0%, 68.0%, 78.0%, 94.0%, and 80.0%, respectively; for these diagnoses, the model's specificity is 92.5%, 95.5%, 96.5%, 95.0%, and 96.5%, respectively. When classifying lesions as benign or as premalignant/malignant, the VGGNet-16 model's accuracy, sensitivity, and specificity are 90.8%, 83.0%, and 96.0%, respectively. The diagnostic performance of the VGGNet-16 model is slightly better than that of the three gynecologists in both classification tasks. With the aid of the model, the overall accuracy of the diagnosis of endometrial lesions by gynecologists can be improved. CONCLUSIONS The VGGNet-16 model performs well in classifying endometrial lesions from hysteroscopic images and can provide objective diagnostic evidence for hysteroscopists.
Collapse
Affiliation(s)
- YunZheng Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - ZiHao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - CuiCui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - YuShan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - Hao Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - LuHe Shan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - JiaNing Huo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - JiaHui Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110021, People's Republic of China.
| |
Collapse
|