1
|
Alves D, Neves A, Vecchi L, Souza T, Vaz E, Mota S, Nicolau-Junior N, Goulart L, Araújo T. Rho GTPase activating protein 21-mediated regulation of prostate cancer associated 3 gene in prostate cancer cell. Braz J Med Biol Res 2024; 57:e13190. [PMID: 38896642 PMCID: PMC11186590 DOI: 10.1590/1414-431x2024e13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.
Collapse
Affiliation(s)
- D.A. Alves
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - A.F. Neves
- Laboratório de Biologia Molecular, Universidade Federal de Catalão, Catalão, GO, Brasil
| | - L. Vecchi
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.A. Souza
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - E.R. Vaz
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - S.T.S. Mota
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - N. Nicolau-Junior
- Laboratório de Modelagem Molecular, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - L.R. Goulart
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.G. Araújo
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| |
Collapse
|
2
|
Wu K, Gong W, Sun H, Li W, Chen L, Duan Y, Zhu J, Zhang H, Ke H. SMAD4 inhibits glycolysis in ovarian cancer through PI3K/AKT/HK2 signaling pathway by activating ARHGAP10. Cancer Rep (Hoboken) 2024; 7:e1976. [PMID: 38230565 PMCID: PMC10849991 DOI: 10.1002/cnr2.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND ARHGAP10 is a tumor-suppressor gene related to ovarian cancer (OC) progression; however, its specific mechanism is unclear. AIMS To investigate the effect of ARHGAP10 on OC cell migration, invasion, and glycolysis. METHODS AND RESULTS Quantitative real-time PCR (qRT-PCR) quantified mRNA and protein expressions of AKT, p-AKT, HK2, and SMAD4 were tested by Western blot. EdU, Wound healing, and Transwell assay were utilized to evaluate OC cell proliferation, migration, and invasion. We used a Seahorse XF24 Extracellular Flux Analyzer to monitor cellular oxygen consumption rates (OCR) and extracellular acidification rates (ECAR). Chromatin immunoprecipitation (ChIP) was used to analyze the transcriptional regulation of ARHGAP10 by SMAD4. ARHGAP10 expression in OC tissues was detected by immunohistochemistry. Our results showed that ARHGAP10 expression was negatively related to lactate levels in human OC tissues. ARHGAP10 overexpression can inhibit the migration, proliferation, and invasion of OC cells, and this function can be blocked by 2-Deoxy-D-glucose. Moreover, we found that ARHGAP10 expression can be rescued with the AKT inhibitor LY294002. CONCLUSIONS This study revealed that the antitumor effects of ARHGAP10 in vivo and in vitro possibly suppress oncogenic glycolysis through the PI3K/AKT/HK2-regulated glycolysis metabolism pathway.
Collapse
Affiliation(s)
- Kui Wu
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Wei Gong
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Huanmei Sun
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Wenjiao Li
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Li Chen
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Yingchun Duan
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Jianlong Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| | - Huihui Ke
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiPR China
| |
Collapse
|
3
|
Liu W, Xia K, Zheng D, Huang X, Wei Z, Wei Z, Guo W. Construction of a prognostic risk score model based on the ARHGAP family to predict the survival of osteosarcoma. BMC Cancer 2023; 23:1179. [PMID: 38041020 PMCID: PMC10693137 DOI: 10.1186/s12885-023-11673-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignancy of bone tumors. More and more ARHGAP family genes have been confirmed are to the occurrence, development, and invasion of tumors. However, its significance in osteosarcoma remains unclear. In this study, we aimed to identify the relationship between ARHGAP family genes and prognosis in patients with OS. METHODS OS samples were retrieved from the TCGA and GEO databases. We then performed LASSO regression analysis and multivariate COX regression analysis to select ARHGAP family genes to construct a risk prognosis model. We then validated this prognostic model. We utilized ESTIMATE and CIBERSORT algorithms to calculate the stroma and immune scores of samples, as well as the proportions of tumor infiltrating immune cells (TICs). Finally, we conducted in vivo and in vitro experiments to investigate the effect of ARHGAP28 on osteosarcoma. RESULTS We selected five genes to construct a risk prognosis model. Patients were divided into high- and low-risk groups and the survival time of the high-risk group was lower than that of the low-risk group. The high-risk group in the prognosis model constructed had relatively poor immune function. GSEA and ssGSEA showed that the low-risk group had abundant immune pathway infiltration. The overexpression of ARHGAP28 can inhibit the proliferation, migration, and invasion of osteosarcoma cells and tumor growth in mice, and IHC showed that overexpression of ARHGAP28 could inhibit the proliferation of tumor cells. CONCLUSION We constructed a risk prognostic model based on five ARHGAP family genes, which can predict the overall survival of patients with osteosarcoma, to better assist us in clinical decision-making and individualized treatment.
Collapse
Affiliation(s)
- Wenda Liu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Kezhou Xia
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Di Zheng
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Xinghan Huang
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Zhun Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Zicheng Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province
| | - Weichun Guo
- Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China, Hubei Province.
| |
Collapse
|
4
|
Yu N, Yuan B, Cai J, Liu J, Zhang W, Bao W, Wang J. Loss of ARHGAP40 expression in basal cell carcinoma via CpG island hypermethylation. Exp Dermatol 2023; 32:2094-2101. [PMID: 37822129 DOI: 10.1111/exd.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Basal cell carcinoma (BCC) is the most common malignant tumour arising from the basal cells of the epidermis or follicular structures. The aetiology of BCC is a multifactorial combination of genotype, phenotype and environmental factors. The pathogenesis of BCC remains unclear, with diverse and complex signalling pathways involved. ARHGAP40 is a Rho GTPase-activating protein (RhoGAP). Rho GTPases play a crucial role in the formation and progression of numerous cancers. The expression levels and roles of ARHGAP40 in BCC have not been explored. Here, ARHGAP40 expression was detected in a set of formalin-fixed, paraffin-embedded (FFPE) samples of basal cell carcinoma, paracancerous normal skin and benign skin lesions. The epigenetic mechanism that downregulates ARHGAP40 in basal cell carcinoma was investigated. We found that ARHGAP40 is expressed in normal basal cells and most benign skin lesions but lost in most basal cell carcinomas. We detected CpG island hypermethylation at the promoter-associated region of ARHGAP40. Our data suggest that ARHGAP40 is downregulated in BCC due to hypermethylation. ARHGAP40 protein is a potential novel biomarker for distinguishing trichoblastoma from BCC. This report is preliminary, and extensive research into the role of ARHGAP40 in BCC carcinogenesis and its potential as a treatment target is required in the future.
Collapse
Affiliation(s)
- Na Yu
- Department of Radiotherapy, Taixing People's Hospital, Taixing, China
| | - Bei Yuan
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Cai
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Jie Liu
- Department of Dermatology, Taixing People's Hospital, Taixing, China
| | - Wei Zhang
- Department of Pathology, Taixing People's Hospital, Taixing, China
| | - Wei Bao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
6
|
Wang S, Zhang S, Lin Z, Ma J, Zhu L, Liao G. Identification and Validation of an Apoptosis-Related Gene Prognostic Signature for Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:889049. [PMID: 35769708 PMCID: PMC9235536 DOI: 10.3389/fonc.2022.889049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
To identify an apoptosis-related gene (ARG) prediction model for oral squamous cell carcinoma (OSCC), we analyzed and validated the data from TCGA and GEO, respectively. Kaplan–Meier survival analysis and ROC curves showed a good prognostic ability of the model both in the internal training set and in the external testing set. Furthermore, we built a nomogram using these ARGs to forecast the survival probability of OSCC patients. Moreover, we evaluated the rate of immune cells infiltrating in the tumor samples and found obvious, different patterns between the high and low risk groups. GO and KEGG analyses demonstrated multiple molecular biological processes and signaling pathways connecting with this prognostic model in OSCC. The expression of these risk genes in clinical specimens was higher in the non-survival patients than in the well-survival patients by immunohistochemical staining analysis. In conclusion, we established a signature made up of six risk apoptosis-related genes to predict the survival rate of OSCC. These genes could also be targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Shuqin Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhi Lin
- Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijun Zhu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Guiqing Liao, ; Lijun Zhu,
| |
Collapse
|
7
|
Fan B, Ji K, Bu Z, Zhang J, Yang H, Li J, Wu X. ARHGAP11A Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Gastric Cancer. Front Mol Biosci 2021; 8:720645. [PMID: 34733886 PMCID: PMC8558302 DOI: 10.3389/fmolb.2021.720645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background: ARHGAP11A, belongs to RhoGAPs family, is vital for cell motility. However, the role of ARHGAP11A in gastric cancer is obscure. Methods: The expression level of ARHGAP11A was analyzed by Oncomine database. The correlation of ARHGAP11A expression with immune infiltrates and associated gene markers was clarified by Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis database. The correlation between ARHGAP11A expression and the patient prognosis was identified by Kaplan-Meier plotter and PrognoScan. Genetic changes of ARHGAP11A were analyzed by cBioPortal. The protein-protein interaction network and gene functional enrichment analysis were constructed and performed by GeneMANIA and Metascape. Results: We found that the expression levels of ARHGAP11A were elevated in various cancers including gastric cancer when compared with normal tissues. High expression of ARHGAP11A was significantly correlated with a better prognosis in gastric cancer. We revealed that the expression of ARHGAP11A was negatively associated with infiltration levels of CD8+ T cells, CD4+ T cells, macrophages and dendritic cells. In addition, ARHGAP11A expression was significantly correlated with gene markers of these immune cells. Lastly, gene functional enrichment analysis indicated that ARHGAP11A involved in regulating lymphocyte activation, cell division, cell killing, myeloid leukocyte differentiation and leukocyte apoptosis. Conclusion: Our findings demonstrated that ARHGAP11A was a valuable prognostic biomarker in gastric cancer. Further work is needed to validate its role and underlying mechanisms in regulating immune infiltrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaojiang Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
8
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|