1
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Screening of lncRNA-miRNA-mRNA Coexpression Regulatory Networks Involved in Acute Traumatic Coagulation Dysfunction Based on CTD, GeneCards, and PharmGKB Databases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7280312. [PMID: 35498136 PMCID: PMC9042625 DOI: 10.1155/2022/7280312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Competitive endogenous RNA (ceRNA) networks play crucial roles in multiple biological processes and development of diseases. They might serve as diagnostic and prognosis markers as well as therapeutic targets. The purpose of this study was to identify a novel ceRNA network involving KCNQ1OT1, hsa-miR-24-3p, and VWF in acute traumatic coagulopathy (ATC) based on databases search. We searched the CTD, GeneCards, and PharmGKB databases for ATC-related target genes using Coagulopathy as a keyword. Upstream miRNAs and lncRNAs of the candidate target VWF were then explored using the miRWalk, microT, TargetScan, RNA22 and Tarbase, and DIANA-LncBase and Starbase databases, respectively. A KCNQ1OT1-hsa-miR-24-3p-VWF ceRNA network was constructed by R “ggalluvial” package. Interaction between KCNQ1OT1, hsa-miR-24-3p, and VWF was examined, and their expression was quantified in the peripheral blood samples from 30 ATC patients and liver tissues of ATC rat models. Forty-one ATC-related target genes were identified following data retrieval from publicly available databases, of which VWF was selected as the target and used for the subsequent analysis. KCNQ1OT1 and hsa-miR-24-3p were confirmed to be the key upstream regulatory factors of VWF. KCNQ1OT1-hsa-miR-24-3p-VWF coexpression regulatory network was constructed where KCNQ1OT1 competitively bound to hsa-miR-24-3p and attenuated its binding to VWF. Both the liver tissues of ATC rats and peripheral blood samples from ATC patients showed increased hsa-miR-24-3p expression and decreased VWF and KCNQ1OT1 expression. Collectively, we described the KCNQ1OT1-hsa-miR-24-3p-VWF ceRNA network in the development of ATC. We propose a new ceRNA that could help in the diagnosis and treatment of ATC.
Collapse
|
4
|
Yin S, Li X, Xiong Z, Xie M, Jin L, Chen H, Mao C, Zhang F, Lian L. A novel ceRNA-immunoregulatory axis based on immune cell infiltration in ulcerative colitis-associated colorectal carcinoma by integrated weighted gene co-expression network analysis. BMC Gastroenterol 2022; 22:188. [PMID: 35428188 PMCID: PMC9013140 DOI: 10.1186/s12876-022-02252-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Patients with ulcerative colitis are at an increased risk of developing colorectal cancer with a prolonged disease course. Many studies have shown that alterations in the immune microenvironment play a key role in ulcerative colitis-associated colorectal cancer. Additionally, competing endogenous RNAs have important functions in immunoregulation, affecting inflammation and tumorigenesis. However, the complexity and behavioral characteristics of the competing endogenous RNA immunoregulatory network in ulcerative colitis-associated colorectal cancer remain unclear. We constructed a competing endogenous RNA immunoregulatory network to discover and validate a novel competing endogenous RNA immunoregulatory axis to provide insight into ulcerative colitis-associated colorectal cancer progression. Methods The competing endogenous RNA immunoregulatory network was constructed using differential expression analysis, weighted gene co-expression network analysis, and immune-related genes. Cmap was used to identify small-molecule drugs with therapeutic potential in ulcerative colitis-associated colorectal cancer. The ulcerative colitis-associated colorectal cancer-related pathways were identified by gene set variation and enrichment analysis. CIBERSORT, single-sample Gene Set Enrichment Analysis, and xCell were used to evaluate the infiltration of immune cells and screen hub immunocytes. The competing endogenous RNA immunoregulatory axis was identified by correlation analysis. Results We identified 130 hub immune genes and constructed a competing endogenous RNA immunoregulatory network consisting of 56 long non-coding RNAs, four microRNAs, and six targeted hub immune genes. Four small-molecule drugs exerted potential therapeutic effects by reversing the expression of hub immune genes. Pathway analysis showed that the NF-κB pathway was significantly enriched. Neutrophils were identified as hub immunocytes, and IL6ST was significantly positively correlated with the neutrophil count. In addition, NEAT1 may serve as a competing endogenous RNA to sponge miR-1-3p and promote IL6ST expression. Conclusions The competing endogenous RNA immunoregulatory axis may regulate neutrophil infiltration, affecting the occurrence of ulcerative colitis-associated colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02252-7.
Collapse
|
5
|
Zhang Z, Li W, Jiang D, Gu L, Li B, Sang C, Rao D, Tang Z, Liu C. Silencing of long non-coding RNA linc01106 suppresses non-small cell lung cancer proliferation, migration and invasion by regulating microRNA-765. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2059578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- ZuXiong Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - WeiZhi Li
- Department of Cardiothoracic Surgery, Tumor Hospital of Ganzhou, Ganzhou, People’s Republic of China
| | - DaMei Jiang
- Department of Cardiothoracic Surgery, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| | - Liang Gu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Bin Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - ChengPeng Sang
- Department of Cardiothoracic Surgery, Gannan Medical University, Ganzhou, People’s Republic of China
| | - DingYu Rao
- Department of Cardiothoracic Surgery, Gannan Medical University, Ganzhou, People’s Republic of China
| | - ZhiXian Tang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, People’s Republic of China
| | - Chi Liu
- Department of Cardiothoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Downregulation of MicroRNA-1 and Its Potential Molecular Mechanism in Nasopharyngeal Cancer: An Investigation Combined with In Silico and In-House Immunohistochemistry Validation. DISEASE MARKERS 2022; 2022:7962220. [PMID: 35251377 PMCID: PMC8896954 DOI: 10.1155/2022/7962220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
Background This study was aimed at elucidating the molecular biological mechanisms of microRNA-1 (miR-1) in nasopharyngeal carcinoma (NPC). Method In this study, we performed a pooled analysis of miR-1 expression data derived from public databases, such as GEO, ArrayExpress, TCGA, and GTEx. The miRWalk 2.0 database, combined with the mRNA microarray datasets, was used to screen the target genes, and the genes were then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis using the DAVID 6.8 database. We then used the STRING 11.0 database and Cytoscape 3.80 software to construct a protein-protein interaction (PPI) network for screening hub genes. Immunohistochemistry (IHC) was further used to validate the expression of hub genes. Finally, potential therapeutic agents for NPC were screened by the Connectivity Map (cMap) database. Results Pooled analysis showed that miR-1 expression was significantly decreased in NPC (SMD = −0.57; P < 0.05). The summary receiver operating characteristic curve suggested that miR-1 had a good ability to distinguish cancerous tissues from noncancerous tissues (AUC = 0.78). The results of GO analysis focused on mitotic nuclear division, DNA replication, cell division, cell adhesion, extracellular space, kinesin complex, and extracellular matrix (ECM) structural constituent. The KEGG analysis suggested that the target genes played a role in key signaling pathways, such as cell cycle, focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, and PI3K/Akt signaling pathway. The PPI network suggested that cyclin-dependent kinase 1 (CDK1) was the hub gene, and the CDK1 protein was subsequently confirmed to be significantly upregulated in NPC tissues by IHC. Finally, potential therapeutic drugs, such as masitinib, were obtained by the cMap database. Conclusion miR-1 may play a vital part in NPC tumorigenesis and progression by regulating focal adhesion kinase to participate in cell mitosis, regulating ECM degradation, and affecting the PI3K/Akt signaling pathway. miR-1 has the potential to be a therapeutic target for NPC.
Collapse
|
7
|
Lin Y, Tang Z, Jin L, Yang Y. The Expression and Regulatory Roles of Long Non-Coding RNAs in Periodontal Ligament Cells: A Systematic Review. Biomolecules 2022; 12:biom12020304. [PMID: 35204802 PMCID: PMC8869287 DOI: 10.3390/biom12020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal ligament (PDL) cells play a pivotal role in periodontal and bone homeostasis and have promising potential for regenerative medicine and tissue engineering. There is compelling evidence that long non-coding RNAs (lncRNAs) are differentially expressed in PDL cells compared to other cell types and that these lncRNAs are involved in a variety of biological processes. This study systematically reviews the current evidence regarding the expression and regulatory functions of lncRNAs in PDL cells during various biological processes. A systematic search was conducted on PubMed, the Web of Science, Embase, and Google Scholar to include articles published up to 1 July 2021. Original research articles that investigated the expression or regulation of lncRNAs in PDL cells were selected and evaluated for a systematic review. Fifty studies were ultimately included, based on our eligibility criteria. Thirteen of these studies broadly explored the expression profiles of lncRNAs in PDL cells using microarray or RNA sequencing. Nineteen studies investigated the mechanisms by which lncRNAs regulate osteogenic differentiation in PDL cells. The remaining 18 studies investigated the mechanism by which lncRNAs regulate the responses of PDL cells to various stimuli, namely, lipopolysaccharide-induced inflammation, tumor necrosis factor alpha-induced inflammation, mechanical stress, oxidative stress, or hypoxia. We systematically reviewed studies on the expression and regulatory roles of lncRNAs in diverse biological processes in PDL cells, including osteogenic differentiation and cellular responses to inflammation, mechanical stress, and other stimuli. These results provide new insights that may guide the development of lncRNA-based therapeutics for periodontal and bone regeneration.
Collapse
Affiliation(s)
- Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (Y.L.); (Z.T.)
- Correspondence:
| |
Collapse
|
8
|
Sudhakar P, Alsoud D, Wellens J, Verstockt S, Arnauts K, Verstockt B, Vermeire S. Tailoring Multi-omics to Inflammatory Bowel Diseases: All for One and One for All. J Crohns Colitis 2022; 16:1306-1320. [PMID: 35150242 PMCID: PMC9426669 DOI: 10.1093/ecco-jcc/jjac027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease [IBD] has a multifactorial origin and originates from a complex interplay of environmental factors with the innate immune system at the intestinal epithelial interface in a genetically susceptible individual. All these factors make its aetiology intricate and largely unknown. Multi-omic datasets obtained from IBD patients are required to gain further insights into IBD biology. We here review the landscape of multi-omic data availability in IBD and identify barriers and gaps for future research. We also outline the various technical and non-technical factors that influence the utility and interpretability of multi-omic datasets and thereby the study design of any research project generating such datasets. Coordinated generation of multi-omic datasets and their systemic integration with clinical phenotypes and environmental exposures will not only enhance understanding of the fundamental mechanisms of IBD but also improve therapeutic strategies. Finally, we provide recommendations to enable and facilitate generation of multi-omic datasets.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Corresponding author: Padhmanand Sudhakar, Translational Research in Gastrointestinal Disorders [TARGID], ON I, Herestraat 49, box 701, 3000 Leuven, Belgium. Tel.: 0032 [0]16 19 49 40;
| | - Dahham Alsoud
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium
| | - Judith Wellens
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium
| | - Sare Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium
| | - Kaline Arnauts
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium
| | - Bram Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Severine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders [TARGID], Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
10
|
Su Y, Hou W, Zhang C, Ji P, Hu R, Zhang Q, Wang Y, Li P, Zhang H, Chen Y, Zhang X, Zhang M. Long non-coding RNA ZFAS1 regulates cell proliferation and invasion in cervical cancer via the miR-190a-3p/KLF6 axis. Bioengineered 2022; 13:3840-3851. [PMID: 35112985 PMCID: PMC8973928 DOI: 10.1080/21655979.2021.2022265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNA (lncRNA) ZFAS1 (zinc finger antisense 1) was demonstrated to play critical roles in various cancer progression. However, the functions of ZFAS in cervical cancers (CC) are unclear. Human CC cell lines were used for in vitro experiments. RT-qPCR (Real Time Quantitative PCR) was performed to detect the expression of ZFAS1, microRNA-190a-3p (miR-190a-3p) and Kruppel-like factor 6 (KLF6). Cell proliferation, invasion and migration assays were used to investigate biological behaviors of CC cells related to CC progression. The relationship of KLF6 to ZFAS1 and miR-190a-3p was analyzed by circRIP and luciferase reporter assay. In addition, in vivo experiment was carried out to explore the function of ZFAS1 in tumor growth of CC. The expression levels of ZFAS1 and KLF6 were both significantly elevated, while the expression of miR-190a-3p was inhibited in CC tumor tissues. In addition, ZFAS1 influenced CC tumor growth through miR-190a-3p. KLF6 was a target of miR-190a-3p and inhibited miR-190a-3p-induced CC tumor growth. Furthermore, KLF6 was negatively regulated by miR-190a-3p, but positively regulated by ZFAS1. Overexpression of ZFAS1 and inhibition of miR-190a-3p significantly increased the expression levels of KLF6. Finally, in vitro assays demonstrated that inhibition of ZFAS1 reduced CC tumor growth and the expression levels of KLF6, but increased the expression levels of miR-190a-3p. ZFAS1 could regulate CC pathogenesis via regulating the miR-190a-3p/KLF6 axis, which might be considered as new CC therapeutic targets.
Collapse
Affiliation(s)
- Yuehui Su
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Wenjing Hou
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Chunyan Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Pengcheng Ji
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Rui Hu
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Qiongying Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Yao Wang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Panpan Li
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Huiping Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Yueyue Chen
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Xiaodong Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| | - Mengzhen Zhang
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR. China
| |
Collapse
|
11
|
Luo S, Wang L, Li S, Wang H, Huang S, Zhang Z, Wang R, Guan H, Huang Y. Identification of Key Molecules and lncRNA-miRNA-mRNA ceRNA Network in Preeclampsia. Int J Gen Med 2021; 14:7579-7590. [PMID: 34754230 PMCID: PMC8572049 DOI: 10.2147/ijgm.s305337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Preeclampsia (PE) is an idiopathic hypertensive disorder of pregnancy and is the leading cause of maternal death, fetal malformation, and premature birth. The purpose of this study is to identify the key molecules and lncRNA-related competitive endogenous (ceRNA) regulatory network in PE. Methods The differentially expressed mRNAs (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified between PE and control using the Deseq R package. In addition, we performed Geno ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) on DEGs and DELs-target genes to explore their function. The ceRNA network was established based on lncRNA-miRNA and miRNA-mRNA interactions and visualized using Cytoscape software. LINCO2532, SLCO4A1-AS1, miR23a-5p, and DYNLRB1 were selected for qRT-PCR assay. Results Using microarray analysis, we screened 726 DELs (456 upregulated and 370 downregulated), 49 DEMs (37 upregulated and 12 downregulated), and 318 DEGs (230 upregulated and 88 downregulated) between PE patients and control. Based on lncRNA-miRNA pairs and miRNA-mRNA pairs, the ceRNA network was constructed, which contained 16 lncRNA, 1 miRNA (miR-23a-5p), and 1 mRNA (DYNLRB1). LncRNA (LINCO2532 and SLCO4A1-AS1) and DYNLRB1 were downregulated and the expression of miR23a-5p was upregulated in PE patients compared with healthy controls. Conclusion In this study, the novel ceRNA network was established in the placentas of PE patients. It elucidated the regulatory mechanism of PE, and identified novel PE biomarkers, which have important guiding significance for clinical treatment and further scientific research of PE.
Collapse
Affiliation(s)
- Shu Luo
- Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,College of Second Clinical, Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Lina Wang
- College of Second Clinical, Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Shuming Li
- College of Second Clinical, Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Hongwei Wang
- Department of Obstetrics, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Sujing Huang
- Department of Obstetrics, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Zhongxia Zhang
- Department of Obstetrics, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Ru Wang
- Department of Obstetrics, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Hongqiong Guan
- College of Second Clinical, Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Yuanhua Huang
- Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| |
Collapse
|
12
|
Wang L, Tan Y, Zhu Z, Chen J, Sun Q, Ai Z, Ai C, Xing Y, He G, Liu Y. ATP2B1-AS1 Promotes Cerebral Ischemia/Reperfusion Injury Through Regulating the miR-330-5p/TLR4-MyD88-NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:720468. [PMID: 34712659 PMCID: PMC8545896 DOI: 10.3389/fcell.2021.720468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
We aim to explore the expression and function of long non-coding RNA (lncRNA) ATP2B1-AS1 in a cerebral ischemia/reperfusion (I/R) injury. In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an OGD/R PC12 cell model to evaluate the expression and role of ATP2B1-AS1 in the cerebral I/R injury. We found that the expression of ATP2B1-AS1 was upregulated in both in vitro and in vivo cerebral I/R injury models. Knockdown of ATP2B1-AS1 increased the cell viability, inhibited apoptosis, and decreased the expressions of inflammation cytokines. The target of ATP2B1-AS1 was predicted and validated to be miR-330-5p. MiR-330-5p abrogated the regulatory effect of ATP2B1-AS1 on cell viability, apoptosis, and cytokines of OGD/R PC12 cells. Furthermore, the results showed that miR-330-5p targeted TLR4, which was also upregulated in the infarcted area of MCAO/IR rats and OGD/R PC12 cells. Overexpression of ATP2B1-AS1 increased the expressions of TLR4, MyD88, and NF-κB p65 of OGD/R PC12 cells, while the effect of ATP2B1-AS1 was abrogated by miR-330-5p. In addition, knockdown of ATP2B1-AS1 decreased the latency time, increased the time of passing the platform position, reduced the cerebral infarct volume, decreased neurological deficit scores, and reduced the number of damaged neurons of MCAO/IR rats that were subjected to the Morris water maze test. Taken together, our study indicates that ATP2B1-AS1 may be an attractive therapeutic target for the treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China.,Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China.,Department of Neurology, Affiliated Taihe Hospital of Xian Jiaotong University Health Science Center, Shiyan, China
| | - Ying Tan
- Department of Laboratory Medicine, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Ziyu Zhu
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhibin Ai
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Chunqi Ai
- Department of Mental Health Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yu Xing
- Department of Medical Image Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guohou He
- Department of Neurology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yong Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Neurobiology, Health Science Center, Xian Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Jiang Z, Chen S, Zhang L, Shen J, Zhong M. Potentially Functional microRNA-mRNA Regulatory Networks in Intestinal Ischemia-Reperfusion Injury: A Bioinformatics Analysis. J Inflamm Res 2021; 14:4817-4825. [PMID: 34584440 PMCID: PMC8464588 DOI: 10.2147/jir.s328732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background Intestinal ischemia-reperfusion (II/R) injury is a common clinical complication associated with high mortality, for which microRNA (miRNA) drives potentially its pathophysiological progression. MiRNAs regulate different messenger RNAs (mRNAs). However, the regulatory network between miRNAs and mRNAs in intestinal ischemia-reperfusion injury is elusive. Methods We analyzed the different expression of mRNAs and miRNAs in intestinal tissues from patients from three groups (arterial group (group A), venous group (group V), control group (group C)). Common differentially expressed (Co-DE) miRNAs and differentially expressed mRNAs were acquired via concerned analyses among the three groups. Co-DE mRNAs were shared parts of target mRNAs and differentially expression mRNAs. Cytoscape was employed to construct the regulatory network between miRNAs and mRNAs. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway depicted the functions and potential pathway associated with Co-DE mRNAs. Using the STRING and Cytoscape, we found critical mRNAs in the protein–protein interaction (PPI) network. Results The miRNA-mRNA network comprised 8 Co-DE miRNAs and 140 Co-DE mRNAs. Of note, 140 Co-DE mRNAs were targets of these 8 miRNAs, and their roles were established through the functional exploration via GO analysis and KEGG analysis. PPI network and Cytoscape revealed COL1A2, THY1, IL10, MMP2, SERPINH1, COL3A1, COL14A1, and P4HA1 as the top 8 key mRNAs. Conclusion This study has demonstrated a miRNA-mRNA regulatory network in intestinal ischemia-reperfusion injury, and explored the key mRNAs and their potential functions. These findings could provide new insight into prognostic markers and therapeutic targets for patients with intestinal ischemia-reperfusion injury in clinical practice.
Collapse
Affiliation(s)
- Zhifeng Jiang
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Song Chen
- Division of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Jie Shen
- Department of Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | - Ming Zhong
- Division of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Shan L, Liu W, Zhan Y. LncRNA HAND2-AS1 exerts anti-oncogenic effects on bladder cancer via restoration of RARB as a sponge of microRNA-146. Cancer Cell Int 2021; 21:361. [PMID: 34238300 PMCID: PMC8268400 DOI: 10.1186/s12935-021-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Background Growing evidence has shown that long noncoding RNA: microRNA: mRNA is implicated in tumor initiation, development, and progression. Long noncoding RNA HAND2-AS1 exhibits anti-cancer effects in diverse cancers. However, the knowledge of HAND-AS1 in bladder cancer development remains unknown. Methods LncRNA and miRNA microarray was conducted to explore different expressed RNA in primary bladder cancer specimens. RNA-RNA interaction prediction tools miRcode (http://www.mircode.org/), DIANA-lncBase v2 (https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-experimental), DIANA-TarBase v.8 (https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex) and miRDB (http://www.mirdb.org/) were employed to predict the interactions between RNA. Bladder cancer cell lines were used to perform cell proliferation and apoptosis assays. Western blot and quantitative Real-time Polymerase Chain Reaction were used to determine the expression of protein and RNA separately. Dual-luciferase assay was conducted to determine the activity of three prime untranslated region of retinoic acid receptor beta (RARB). Furthermore, 5637 human bladder cancer mouse models were established to investigate the interactions of lncRNA: miRNA: mRNA in vivo. Results Based on the RT2 lncRNA PCR Arrays analysis, we validated HAND2-AS1 declined in bladder cancer and negatively correlated with the depth of invasion and grades. The overexpression of HAND2-AS1 in human bladder cancer cells 5637 and RT4 hampered cell proliferation by provoking Caspase 3-triggered cell apoptosis. Besides, one of the HAND2-AS1 sponges, miR-146, elevated in bladder cancer and targeted the tumor suppressor, retinoic acid receptor beta (RARB). We further demonstrated that the HAND2-AS1: miR-146: RARB complex promoted Caspase 3-mediated apoptosis by suppressing COX-2 expression. Finally, the results gained in mouse xenografts suggested that HAND2-AS1 diminished miR-146 expression, thereby reversing the suppression of miR-146 on RARB-mediated apoptosis and contributing to bladder cancer regression. Conclusion The present study sheds light on the fact that lncRNA HAND2-AS1 exerted as a tumor suppressor by releasing RARB from miR-146, leading to tumor proliferation and invasion inhibition. The findings expanded HAND2-AS-mediated regulatory networks' knowledge and provided novel insights to improve the RARB-targeted regimens against bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02063-y.
Collapse
Affiliation(s)
- Liping Shan
- Department of Urology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
15
|
Sun J, Jia J, Yuan W, Liu S, Wang W, Ge L, Ge L, Liu XJ. LncRNA BLACAT1 Accelerates Non-small Cell Lung Cancer Through Up-Regulating the Activation of Sonic Hedgehog Pathway. Front Oncol 2021; 11:625253. [PMID: 33937028 PMCID: PMC8080024 DOI: 10.3389/fonc.2021.625253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, increasing evidence has displayed that lncRNAs can exhibit crucial function in cancer progression, including lung cancer. LncRNA bladder cancer-associated transcript 1 (BLACAT1) is reported to participate in various cancers. The aim of our current study was to investigate the function of BLACAT1 in non-small cell lung cancer progression and study the functional pathway. Here, we reported BLACAT1 was significantly up-regulated in lung cancer tissues in comparison to the adjacent normal tissues, which suggested BLACAT1 might act as an oncogene in lung cancer. Then, A549 and PC9 cells were infected with BLACAT1 overexpression plasmid and shRNA. As shown, we proved up-regulation of BLACAT1 greatly induced the growth of non-small cell lung cancer cells. Reversely, knockdown of BLACAT1 reduced A549 and PC9 cell proliferation, migration and invasion. Sonic hedgehog (shh) signaling is able to exert a significant role in carcinogenesis, including lung cancer. Currently, we proved that up-regulation of BLACAT1 activated shh signaling pathway, via inducing shh, Gli-1 and Smo expression. shh pathway inhibitor GANT-61 reversed the effect of overexpression of BLACAT1 on non-small cell lung cancer. Moreover, we manifested that loss of BLACAT1 remarkably reduced the in vivo growth and metastasis of A549 cells via enhancing infiltrating CD3+ T cells. In conclusion, our research revealed a critical role of BLACAT1 in the modulation of non-small cell lung cancer via modulating shh pathway.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jingzhou Jia
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Wuying Yuan
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Shu Liu
- Department of Respiratory, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wei Wang
- Department of Oncology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lili Ge
- Department of Clinical Laboratory, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Liyue Ge
- Department of Oncology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Jun Liu
- Outpatient Department of External Injury and Wound, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
16
|
Liu J, Sun Y, Zhu B, Lin Y, Lin K, Sun Y, Yao Z, Yuan L. Identification of a potentially novel LncRNA-miRNA-mRNA competing endogenous RNA network in pulmonary arterial hypertension via integrated bioinformatic analysis. Life Sci 2021; 277:119455. [PMID: 33831428 DOI: 10.1016/j.lfs.2021.119455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a fatal cardiovascular disease with a cancer-like phenotype. Competing endogenous RNA (ceRNA) networks extensively involve in its pathological processes. But rare ceRNA networks and profound molecular mechanisms have been revealed in PAH. The aim of this study was to illuminate the ceRNA networks in PAH. MATERIALS AND METHODS In this work, we have chosen the idiopathic PAH as an example. GSE15197 (mRNA) and GSE56914 (miRNA) from the Gene Expression Omnibus (GEO) were selected to explore key genes and novel ceRNA networks in PAH by a series of integrated bioinformatic analysis. To be more scientific, a part of pairs in identified ceRNA network were detected in hypoxia-induced HPASMCs. And the dual-luciferase assay was performed to certify the relationship between miRNAs and mRNAs. KEY FINDINGS Totally, 311 differentially expressed genes (DEGs) were identified and functional enrichment analysis illuminated that the majority of DEGs were enriched in proliferation, anti-apoptosis, inflammation and cancer-related pathways. And 10 hub genes were determined via Cytohubba after PPI network construction. Sequentially, with stepwise reverse prediction and pan-cancer co-expression analysis from mRNA to LncRNA in TargetScan, miRNet, ENCORI (Starbase V3.0) databases, a crucially ceRNA network was identified including 14 LncRNAs, 2 miRNAs, and 3 mRNAs. Further, in hypoxia-induced HPASMCs, the alterations of mRNAs, miRNAs and LncRNAs and their relationship were in accordance with the results we identified. SIGNIFICANCE Consequently, the unique hub genes and ceRNA network we proposed may advance our understanding of the molecular mechanisms in PAH.
Collapse
Affiliation(s)
- Jiantao Liu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Yupeng Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Bingqing Zhu
- The Renji College, Wenzhou Medical University, Wenzhou, PR China
| | - Yufan Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Kexin Lin
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Yiruo Sun
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Zhengze Yao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, PR China
| | - Linbo Yuan
- Department of Physiology, Basic Medical Science School, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
17
|
Epigenomic and transcriptomic analysis of chronic inflammatory diseases. Genes Genomics 2021; 43:227-236. [PMID: 33638813 DOI: 10.1007/s13258-021-01045-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory diseases (CIDs) have complex pathologies that result from aberrant and persistent immune responses. However, the precise triggers and mechanisms remain elusive. An important aspect of CID research focuses on epigenetics modifications, which regulate gene expression and provide a dynamic transcriptional response to inflammation. In recent years, mounting evidence has demonstrated an association between epigenomic and transcriptomic dysregulation and the phenotypes of CIDs. In particular, epigenetic changes at cis-regulatory elements have provided new insights for immune cell-specific alterations that contribute to disease etiology. Furthermore, the advancements in single-cell genomics provide novel solutions to cell type heterogeneity, which has long posed challenges for CID diagnosis and treatment. In this review, we discuss the current state of epigenomics research of CID and the insights derived from single-cell transcriptomic and epigenomic studies.
Collapse
|
18
|
Wang D, Li Z, Li H, Lu J, Qin Q. Long non-coding RNA SNHG20 promotes ovarian cancer development by targeting microRNA-338-3p to regulate MCL1 expression. Oncol Lett 2020; 21:130. [PMID: 33552251 PMCID: PMC7798103 DOI: 10.3892/ol.2020.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs/miRs) were reported to be associated with the development of ovarian cancer (OC). Increasing evidence demonstrated that lncRNA SNHG20 and miR-338-3p were involved in OC. However, the functional mechanism of lncRNA SNHG20 and miR-338-3p in OC development remains unknown. The expression of SNHG20, miR-338-3p and myeloid cell leukemia 1 (MCL1) was detected by reverse transcription-quantitative PCR. MTT assay, flow cytometry and transwell migration and invasion assays were used to assess cell proliferation, apoptosis, migration and invasion, respectively. The relative protein expression was detected by western blot analysis. The interaction between miR-338-3p and SNHG20 or MCL1 was predicted by starBase v3.0, and subsequently confirmed by dual-luciferase reporter assay. Besides, mouse xenograft assay was carried out to explore the effect of SNHG20 on tumor growth in vivo. The levels of SNHG20 and MCL1 were upregulated, while miR-338-3p level was downregulated in OC tissues and cells. SNHG20 knockdown repressed OC cell proliferation, migration, invasion and epithelial-mesenchymal transition, and induced apoptosis. Interestingly, SNHG20 targeted miR-338-3p to regulate MCL1 expression. miR-338-3p depletion or MCL1 overexpression could reverse the effects of SNHG20 knockdown on OC cells. Besides, SNHG20 knockdown impeded tumor growth in vivo. In conclusion, the present study demonstrated that SNHG20 regulates OC development via modulation of the miR-338-3p/MCL1 axis, providing the theoretical basis for the treatment of OC.
Collapse
Affiliation(s)
- Ding Wang
- Department of Gynecology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Zhiying Li
- Department of Gynecology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Hui Li
- Department of Gynecology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Jiao Lu
- Department of Gynecology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Qi Qin
- Department of Gynecology, The Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| |
Collapse
|
19
|
Qin C, Jin L, Li J, Zha W, Ding H, Liu X, Zhu X. Long Noncoding RNA LINC02163 Accelerates Malignant Tumor Behaviors in Breast Cancer by Regulating the MicroRNA-511-3p/HMGA2 Axis. Oncol Res 2020; 28:483-495. [PMID: 32571448 PMCID: PMC7751230 DOI: 10.3727/096504020x15928179818438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long intergenic nonprotein-coding RNA 02163 (LINC02163) has been reported to be upregulated and work as an oncogene in gastric cancer. The aims of the present study were to determine the expression profile and clinical value of LINC02163 in breast cancer. Additionally, the detailed functions of LINC02163 in breast cancer were explored, and relevant molecular events were elucidated. In this study, LINC02163 was upregulated in breast cancer, and its expression level was closely associated with tumor size, lymph node metastasis, and TNM stage. Patients with breast cancer presenting high LINC02163 expression exhibited shorter overall survival than those presenting low LINC02163 expression. Knockdown of LINC02163 resulted in a decrease in breast cancer cell proliferation, migration, and invasion and an increase in cell apoptosis in vitro. In addition, silencing of LINC02163 impeded breast cancer tumor growth in vivo. Mechanistic investigation revealed that LINC02163 served as a competing endogenous RNA for microRNA-511-3p (miR-511-3p) and consequently upregulated the expression of the high-mobility group A2 (HMGA2), a downstream target of miR-511-3p. Intriguingly, miR-511-3p inhibition and HMGA2 restoration counteracted the effects of LINC02163 deficiency on the malignant properties of breast cancer cells. LINC02163 exerts cancer-promoting effects during the initiation and progression of breast cancer via regulation of the miR-511-3p/HMGA2 axis. Our findings add to our understanding of the roles of the LINC02163/miR-511-3p/HMGA2 pathway as a regulator of breast cancer pathogenesis and may be useful in the development of lncRNA-directed cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Chenglin Qin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Linfang Jin
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ‡Department of Pathology, Affiliated Hospital of Jiangnan University (Wuxi Fourth People’s Hospital), Wuxi, Jiangsu, P.R. China
| | - Jia Li
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- §Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Wenzhang Zha
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Huiming Ding
- †Department of General Surgery, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng City No. 1 People’s Hospital, Yancheng, Jiangsu, P.R. China
| | - Xiaorong Liu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- ¶Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, P.R. China
| | - Xun Zhu
- *Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
20
|
Mao R, Wang Z, Zhang Y, Chen Y, Liu Q, Zhang T, Liu Y. Development and validation of a novel prognostic signature in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:22233-22252. [PMID: 33188157 DOI: 10.18632/aging.104161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Competing endogenous RNA networks have attracted increasing attention in gastric adenocarcinoma (GA). The current study aimed to explore ceRNA-based prognostic biomarkers for GA. RNA expression profiles were downloaded from TCGA and GEO databases. A ceRNA network was constructed based on the most relevant modules in the weighted gene coexpression network analysis. Kaplan-Meier (KM) survival analysis revealed prognosis-related RNAs, which were subjected to the multivariate Cox regression analysis. The predictive accuracy and discriminative ability of the signature were determined by KM analyses, receiver operating characteristic curves and area under the curve values. Ultimately, we constructed a ceRNA network consisting of 55 lncRNAs, 17 miRNAs and 73 mRNAs. Survival analyses revealed 3 lncRNAs (LINC01106, FOXD2-AS1, and AC103702.2) and 3 mRNAs (CCDC34, ORC6, and SOX4) as crucial prognostic factors; these factors were then used to construct a survival specific ceRNA network. Patients with high risk scores exhibited significantly worse overall survival than patients with low risk scores, and the AUC for 5-year survival was 0.801. A total of 112 GA specimens and the GSE84437 dataset were used to successfully validate the robustness of our signature by qRT-PCR. In summary, we developed a prognostic signature for GA, that shows better accuracy than the traditional TNM pathological staging system.
Collapse
Affiliation(s)
- Rui Mao
- Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanchuan Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - YuanYuan Chen
- Department of Pathology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, Sichuan, China
| | - Yanjun Liu
- Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| |
Collapse
|
21
|
Guo K, Gong W, Wang Q, Gu G, Zheng T, Li Y, Li W, Fang M, Xie H, Yue C, Yang J, Zhu Z. LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death Dis 2020; 11:869. [PMID: 33067422 PMCID: PMC7567881 DOI: 10.1038/s41419-020-03026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are essential contributors to the progression of various human cancers. Long intergenic non-protein coding RNA 1106 is a member of lncRNAs family. Until now, the specific role of LINC01106 in CRC remains undefined. The aim the current study was to unveil the functions of LINC01106 and explore its potential molecular mechanism in CRC. Based on the data of online database GEPIA, we determined that LINC01106 was expressed at a high level in colon adenocarcinoma (COAD) tissues compared to normal colon tissues. More importantly, high level of LINC01106 had negative correlation with the overall survival of COAD patients. Additionally, we also determined the low level of LINC01106 in normal colon tissues based on UCSC database. Through qRT-PCR, we identified that LINC01106 was highly expressed in CRC tissues compared to adjacent normal ones. Similarly, we detected the expression of LINC01106 and confirmed that LINC01106 was expressed higher in CRC cells than that in normal cells. Subsequently, LINC01106 was mainly distributed in the cytoplasm. LINC01106 induced the proliferation, migration, and stem-like phenotype of CRC cells. Mechanistically, cytoplasmic LINC01106 positively modulated Gli4 in CRC cells by serving as a miR-449b-5p sponge. Furthermore, nuclear LINC01106 could activate the transcription of Gli1 and Gli2 through recruiting FUS to Gli1 and Gli2 promoters. Mechanism of investigation unveiled that Gli2 was a transcription activator of LINC01106. In conclusion, Gli2-induced upregulation of LINC01106 aggravates CRC progression through upregulating Gli2, Gli2, and Gli4.
Collapse
Affiliation(s)
- Kun Guo
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Jinling Hospital, School of Medicine, Southeast University, 210009, Nanjing, Jiangsu Province, P. R. China
| | - Qin Wang
- Institute of Clinical Physiology, Jiangsu Health Vocational College, 211800, Nanjing, Jiangsu Province, P. R. China
| | - Guosheng Gu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Tao Zheng
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, 230032, Hefei, Anhui Province, P. R. China
| | - Weijie Li
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Miao Fang
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Haohao Xie
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu Province, P. R. China
| | - Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009, Nanjing, Jiangsu Province, P. R. China.
| | - Jianbo Yang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China.
| | - Zhiqiang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui Province, P. R. China.
| |
Collapse
|
22
|
Gu Y, Huang Y, Sun Y, Liang X, Kong L, Liu Z, Wang L. [Long non-coding RNA LINC01106 regulates colorectal cancer cell proliferation and apoptosis through the STAT3 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1259-1264. [PMID: 32990221 DOI: 10.12122/j.issn.1673-4254.2020.09.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To investigate the expression of LINC01106 in colorectal cancer and its role in regulating the proliferation and apoptosis of colorectal cancer cells. METHODS We analyzed the data of LINC01106 expression levels in tumor tissues and normal tissues of patients with colorectal cancer in TCGA database and explored the association of LINC01106 expression level with the prognosis of the patients. Colorectal cancer SW480 cell lines with LINC01106 knockdown or overexpression were established, and their proliferation and apoptosis relative to the parental cells were evaluated using CCK-8 assay and flow cytometry, respectively. The expressions of p-STAT3, STAT3, and Bcl-2 in the cells were detected by immunoblotting. Nude mouse models bearing xenografts of SW480 cells with LINC01106 knockdown or na?ve SW480 cells were established to observe the effect of LINC01106 knockdown on the growth of SW480 cells in vivo. RESULTS Analysis of the data from TCGA database showed that the expression level of LINC01106 was significantly higher in colorectal cancer tissues than in normal tissues, and LINC01106 expression level was significantly related to the prognosis of the patients (P < 0.05). Knockdown of LINC01106 significantly inhibited the proliferation and promoted apoptosis of SW480 cells (P < 0.05), while LINC01106 overexpression significantly promoted proliferation of the cells. LINC01106 knockdown in SW-480 cells obviously lowered the expressions of p- STAT3 and Bcl-2 and suppressed the growth of the xenograft in nude mice. CONCLUSIONS LINC01106 is significantly up-regulated in colorectal cancer tissue and is related to the prognosis of the patients. LINC01106 can regulate the proliferation and apoptosis of SW480 cells through STAT3/Bcl-2 signaling and may serve as a potential marker for the diagnosis and prognostic evaluation of colorectal cancer.
Collapse
Affiliation(s)
- Yuchen Gu
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yingying Huang
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yiming Sun
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Xin Liang
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Lingti Kong
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Zhe Liu
- Department of Pharmacy, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing 211198, China
| |
Collapse
|
23
|
Gao X, Yu L, Zhang J, Xue P. Silencing of Long Non-Coding RNA LINC01106 Suppresses the Proliferation, Migration and Invasion of Endometrial Cancer Cells Through Regulating the miR-449a/MET Axis. Onco Targets Ther 2020; 13:9643-9655. [PMID: 33061446 PMCID: PMC7532893 DOI: 10.2147/ott.s264642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Endometrial cancer (EC) is an aggressive tumor in females and the development of EC is considered to regulate by some long non-coding RNAs (lncRNAs). Therefore, this study aimed to investigate the regulatory mechanism of lncRNA LINC01106 on EC. METHODS The expression of lncRNA LINC01106, miR-449a and MET in EC tissues and cells was detected by qRT-PCR. Through MTT, wound healing and transwell invasion assays, the proliferation, migration and invasion of EC cells were detected, respectively. The xenograft tumor model was constructed in nude mice to confirm the inhibiting effect of LINC01106 knockdown on EC in vivo. The interactions between miR-449a and LINC01106/MET were predicted by Starbase/Targetscan software and verified by the dual-luciferase reporter assay or RNA immunoprecipitation assay. Western blot assay was performed to determine the protein level of MET. RESULTS LncRNA LINC01106 expression was highly up-regulated in EC tissues and cells. The proliferation, migration and invasion of EC cells in vitro were inhibited by the transfection of sh-LINC01106. The growth of tumor xenograft was suppressed by injection of sh-LINC01106. MiR-449a was a target of LINC01106and was negatively modulated by LINC01106. MiR-449a overexpression suppressed the proliferation, migration and invasion of EC cells. In addition, MET was identified as a target gene of miR-449a. Both the high expression of miR-449a and low expression of MET reversed the inhibiting effects of LINC01106 knockdown on Ishikawa cells. CONCLUSION Silencing of LINC01106 inhibits the occurrence and development of EC via regulating the miR-449a/MET axis. This study provides a possible therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xihuan Gao
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Liming Yu
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Jingjing Zhang
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Ping Xue
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| |
Collapse
|
24
|
Feng W, Li B, Wang J, Zhang H, Liu Y, Xu D, Cheng K, Zhuang J. Long Non-coding RNA LINC00115 Contributes to the Progression of Colorectal Cancer by Targeting miR-489-3p via the PI3K/AKT/mTOR Pathway. Front Genet 2020; 11:567630. [PMID: 33193658 PMCID: PMC7525183 DOI: 10.3389/fgene.2020.567630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are tumor-related regulators and have been found to be involved in the underlying molecular mechanisms of colorectal cancer (CRC). However, the role of lncRNA LINC00115 during CRC progression is not entirely elucidated. In this study, we discovered that LINC00115 was significantly overexpressed in CRC, and its overexpression predicted poor patient outcomes. Downregulation of LINC00115 markedly inhibited CRC cell proliferation, increased cell apoptosis, and suppressed cell migration and invasion. Moreover, downregulation of LINC00115 led to the inactivation of PI3K/AKT/mTOR signaling. Bioinformatics analysis identified miR-489-3p as a candidate target of LINC00115. Furthermore, we revealed an inverse correlation between LINC00115 and miR-489-3p in CRC tissues. Importantly, by luciferase reporter assay, we found that miR-489-3p might directly target LINC00115, and downregulation of miR-489-3p could rescue the biological effects induced by the absence of LINC0015. In conclusion, our findings demonstrated that LINC00115 serves as an oncogene in CRC metastasis. Deeper understanding of the LINC00115/miR-489-3p axis might provide potential therapeutic targets against CRC metastasis.
Collapse
Affiliation(s)
- Weiyu Feng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Baodong Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbang Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huiliang Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonggang Liu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dongli Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Cheng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhuang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Tait S, Baldassarre A, Masotti A, Calura E, Martini P, Varì R, Scazzocchio B, Gessani S, Del Cornò M. Integrated Transcriptome Analysis of Human Visceral Adipocytes Unravels Dysregulated microRNA-Long Non-coding RNA-mRNA Networks in Obesity and Colorectal Cancer. Front Oncol 2020; 10:1089. [PMID: 32714872 PMCID: PMC7351520 DOI: 10.3389/fonc.2020.01089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, and the obesity-associated inflammation, represents a major risk factor for the development of chronic diseases, including colorectal cancer (CRC). Dysfunctional visceral adipose tissue (AT) is now recognized as key player in obesity-associated morbidities, although the biological processes underpinning the increased CRC risk in obese subjects are still a matter of debate. Recent findings have pointed to specific alterations in the expression pattern of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), as mechanisms underlying dysfunctional adipocyte phenotype in obesity. Nevertheless, the regulatory networks and interrelated processes relevant for adipocyte functions, that may contribute to a tumor-promoting microenvironment, are poorly known yet. To this end, based on RNA sequencing data, we identified lncRNAs and miRNAs, which are aberrantly expressed in visceral adipocytes from obese and CRC subjects, as compared to healthy lean control, and validated a panel of modulated ncRNAs by real-time qPCR. Furthermore, by combining the differentially expressed lncRNA and miRNA profiles with the transcriptome analysis dataset of adipocytes from lean and obese subjects affected or not by CRC, lncRNA-miRNA-mRNA adipocyte networks were defined for obese and CRC subjects. This analysis highlighted several ncRNAs modulation that are common to both obesity and CRC or unique of each disorder. Functional enrichment analysis of network-related mRNA targets, revealed dysregulated pathways associated with metabolic processes, lipid and energy metabolism, inflammation, and cancer. Moreover, adipocytes from obese subjects affected by CRC exhibited a higher complexity, in terms of number of genes, lncRNAs, miRNAs, and biological processes found to be dysregulated, providing evidence that the transcriptional and post-transcriptional program of adipocytes from CRC patients is deeply affected by obesity. Overall, this study adds further evidence for a central role of visceral adipocyte dysfunctions in the obesity-cancer relationship.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Paolo Martini
- Department of Biology, University of Padua, Padua, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Yan L, Yue C, Xu Y, Jiang X, Zhang L, Wu J. Identification of Potential Diagnostic and Prognostic Pseudogenes in Hepatocellular Carcinoma Based on Pseudogene-miRNA-mRNA Competitive Network. Med Sci Monit 2020; 26:e921895. [PMID: 32457285 PMCID: PMC7249743 DOI: 10.12659/msm.921895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background It is widely known that hepatocellular carcinoma (HCC) has high rates of morbidity and mortality. A large number of studies have indicated that pseudogenes have an important effect on the carcinogenesis of HCC. Pseudogenes can play a role through the ceRNA network. There have been numerous studies on lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks. However, the pseudogene-miRNA-mRNA network in HCC has rarely been researched or reported on. Material/Methods The Cancer Genome Atlas (TCGA) database was researched and differences between selected genes were studied. A pseudogene-miRNA-mRNA network was then constructed and clustering of pseudogenes was studied. The diagnostic value of the selected pseudogenes, their functions, and pathways were investigated using available databases to understand their possible pathogenic mechanism in HCC. The protein-protein interaction network of target genes was found and the top 10 hub genes were identified. Expression of hub genes in HCC tissues was then detected by RT-qPCR. Results By analyzing the gene difference and clinical data of HCC, we constructed a ceRNA network composed of 4 pseudogenes, 8 miRNAs, and 30 mRNAs. The pseudogenes AP000769.1, KRT16P1, KRT16P3, and RPLP0P2 were all correlated with the diagnosis and prognosis of HCC. Functional analyses through the Kyoto Encyclopedia of Genes and Genomes and the Gene Ontology databases indicated that pseudogenes can affect the physiological process of HCC through the p53 pathway. The top 10 hub genes identified were all highly expressed in HCC tissues and affected the patient survival rate. Conclusions In this study, 4 pseudogenes related to the diagnosis and prognosis of liver cancer were found through the construction of a ceRNA network. These 4 pseudogenes might constitute new therapeutic targets for liver cancer patients.
Collapse
Affiliation(s)
- Lijun Yan
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Chaosen Yue
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xincen Jiang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Lijun Zhang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
27
|
LincRNA Cox-2 Regulates Lipopolysaccharide-Induced Inflammatory Response of Human Peritoneal Mesothelial Cells via Modulating miR-21/NF- κB Axis. Mediators Inflamm 2019; 2019:8626703. [PMID: 31885500 PMCID: PMC6914883 DOI: 10.1155/2019/8626703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is a common postoperative complication caused by any peritoneal inflammatory process. This study aimed to identify the biological function of large intergenic non-coding RNAs (lincRNAs) Cox-2 in the inflammation reaction of adhesion formation. The Cox-2 expression in peritoneal adhesion tissues and normal tissues was detected. The human peritoneal mesothelium cells (HPMCs) were treated with lipopolysaccharide (LPS) to induce inflammatory injury. The effect of Cox-2 suppression on cell viability, apoptosis and inflammatory factors of LPS induced HPMCs injury were explored. The regulatory correlation between Cox-2 and miR-21, as well as the targeted genes of miR-21 were identified. Meanwhile, the regulatory mechanism of Cox-2/miR-21 axis on NF-κB pathway was explored. It indicated that Cox-2 was highly expressed in peritoneal adhesion tissues compared with that in normal tissues. Suppression of Cox-2 ameliorated LPS induced HMPCs injury as cell viability was promoted, and cell apoptosis and the production of inflammatory factors were inhibited. And suppression of Cox-2 reversed the LPS induced HPMCs injury by regulation of miR-21 negatively. miR-21 was negatively correlated with TLR4, and TLR4 was predicted as target gene of miR-21. Furthermore, the suppression of miR-21 on LPS induced HPMCs injury was reversed by knockdown of TLR4, which could inhibited the activation of NF-κB pathway axis. It suggested that the effect of Cox-2 on LPS induced HPMCs injury was achieved by negatively regulation of miR-21 and targeted TLR4 through NF-κB pathway axis. The findings may provide a new insight into preventing postoperative peritoneal adhesion.
Collapse
|