1
|
Sarwar MF, Waseem QUA, Awan MF, Ali S, Ahmad A, Malook SU, Ali Q. In-silico characterization of LSDV132 protein divulged its BCL-2-like nature. Heliyon 2024; 10:e27657. [PMID: 38510042 PMCID: PMC10951589 DOI: 10.1016/j.heliyon.2024.e27657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.
Collapse
Affiliation(s)
- Muhammad Farhan Sarwar
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Qurat ul Ain Waseem
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Mudassar Fareed Awan
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Sajed Ali
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (UMT) Sialkot, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saif ul Malook
- Department of Entomology & Nematology, University of Florida, USA
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Tang T, Liang H, Wei W, Han Y, Cao L, Cong Z, Luo S, Wang H, Zhou ML. Aloperine targets lysosomes to inhibit late autophagy and induces cell death through apoptosis and paraptosis in glioblastoma. MOLECULAR BIOMEDICINE 2023; 4:42. [PMID: 37975957 PMCID: PMC10656413 DOI: 10.1186/s43556-023-00155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive intracranial tumour, and current chemotherapy regimens have limited efficacy. Aloperine (ALO), a natural alkaline compound, has shown potential as an antitumor agent. However, the effect of ALO against GBM remains unclear. This study aimed to investigate the function of ALO in treating GBM. U87, A172, and GL261 cell lines were used for in vitro experiments, and GL261 was also used to establish in vivo models. The results showed that ALO inhibited the proliferation of GBM cells by cell cycle arrest and apoptosis. Furthermore, autophagy was found to play a critical role, suggested by observation of autophagosomes under the transmission electron microscopy. It was discovered for the first time that ALO targeted lysosomes directly in glioma cells, tested by fluo-rescence-labelled ALO and organelle-localizing probes. In addition, ALO inhibited late autophagy and induced paraptosis in GBM, verified by classical gene expression changes in qPCR and western blotting. Also, ALO inhibited tumour growth and acted synergistically with temozolomide in intracranial glioma mice models in vivo. Our findings suggest that ALO targets lysosomes to inhibit late autophagy in GBM, inducing cell cycle arrest, paraptosis, and apoptosis. ALO may therefore be a promising therapeutic agent for the treatment of GBM.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, P.R. China
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Hui Liang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, P.R. China
| | - Wuting Wei
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yanling Han
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Liang Cao
- Department of Medical Oncology, Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, P.R. China
| | - Zixiang Cong
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Shiqiao Luo
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China.
- Department of Neurosurgery, Benq Medical Center, Nanjing Medical University, Nanjing, China.
| | - Meng-Liang Zhou
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China.
| |
Collapse
|
3
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
4
|
Li G, Zhong Y, Wang W, Jia X, Zhu H, Jiang W, Song Y, Xu W, Wu S. Sempervirine Mediates Autophagy and Apoptosis via the Akt/mTOR Signaling Pathways in Glioma Cells. Front Pharmacol 2021; 12:770667. [PMID: 34916946 PMCID: PMC8670093 DOI: 10.3389/fphar.2021.770667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The potential antitumor effects of sempervirine (SPV), an alkaloid compound derived from the traditional Chinese medicine Gelsemium elegans Benth., on different malignant tumors were described in detail. The impact of SPV on glioma cells and the basic atomic components remain uncertain. This study aimed to investigate the activity of SPV in vitro and in vivo. The effect of SPV on the growth of human glioma cells was determined to explore three aspects, namely, cell cycle, cell apoptosis, and autophagy. In this study, glioma cells, U251 and U87 cells, and one animal model were used. Cells were treated with SPV (0, 1, 4, and 8 μM) for 48 h. The cell viability, cell cycle, apoptosis rate and autophagic flux were examined. Cell cycle, apoptotic, autophagy, and Akt/mTOR signal pathway-related proteins, such as CDK1, Cyclin B1, Beclin-1, p62, LC3, AKT, and mTOR were investigated by Western blot approach. As a result, cells induced by SPV led to G2/M phase arrest and apoptosis. SPV also promoted the effect of autophagic flux and accumulation of LC3B. SPV reduced the expression of p62 protein and induced the autophagic death of glioma cells. Furthermore, SPV downregulated the expressions of AKT and mTOR phosphorylated proteins in the mTOR signaling pathway, thereby affecting the onset of apoptosis and autophagy in U251 cells. In conclusion, SPV induced cellular G2/M phase arrest and blockade of the Akt/mTOR signaling pathway, thereby triggering apoptosis and cellular autophagy. The in vivo and in vitro studies confirmed that SPV inhibits the growth of glioma cancer.
Collapse
Affiliation(s)
- Gaopan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuhuan Zhong
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenyi Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenwen Jiang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Han W, Kong D, Lu Q, Zhang W, Fan Z. Aloperine inhibits colorectal cancer cell proliferation and metastasis progress via regulating miR-296-5p/STAT3 axis. Tissue Cell 2021; 74:101706. [PMID: 34883316 DOI: 10.1016/j.tice.2021.101706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Anti-tumorous effect of Aloperine (ALO) has been previously found. This study examined the role and the underlying mechanism of ALO in colorectal cancer (CRC). CRC cells were processed by different concentrations of ALO, and subsequently the cell proliferation was detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and miR-296-5p expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the target gene of miR-296-5p was predicted by TargetScan and confirmed by dual-luciferase reporter assay. The expressions of signal transducer and activator of transcription 3 (STAT3), apoptosis-related proteins and epithelial-mesenchymal transition (EMT)-related markers were measured by Western blot. Clone formation assay, flow cytometry, wound-healing and Transwell assays were respectively employed to detect cell proliferation, apoptosis, migration and invasion. ALO inhibited CRC cell proliferation in a dose-dependent manner. MiR-296-5p was low-expressed in CRC tissues and cells, and ALO promoted miR-296-5p expression. STAT3 was targeted by miR-296-5p. Up-regulation of miR-296-5p and ALO treatment both suppressed STAT3 expression, inhibited CRC cell proliferation, migration, invasion as well as the expressions of Bcl-2 and N-cadherin, but promoted apoptosis and expressions of Bax and E-cadherin, which were all reversed by overexpressed STAT3. ALO inhibited CRC cell proliferation, metastasis and EMT but promoted apoptosis via regulating miR-296-5p/STAT3 axis.
Collapse
Affiliation(s)
- Wei Han
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China; Department of General Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China
| | - Qin Lu
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China
| | - Zhimin Fan
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210012, China.
| |
Collapse
|
6
|
Chen YD, Cai FY, Mao YZ, Yang YS, Xu K, Liu XF, Fan WW, Chen W, Jiang FQ, Zhang H. The anti-neoplastic activities of aloperine in HeLa cervical cancer cells are associated with inhibition of the IL-6-JAK1-STAT3 feedback loop. Chin J Nat Med 2021; 19:815-824. [PMID: 34844720 DOI: 10.1016/s1875-5364(21)60106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 12/09/2022]
Abstract
Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.
Collapse
Affiliation(s)
- Yao-Dong Chen
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Fang-Yu Cai
- Department of Thoracic Surgery, the General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150088, China
| | - Yu-Ze Mao
- Department of Cardio-Thoracic Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Yong-Sheng Yang
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Kun Xu
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Fang Liu
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wen-Wen Fan
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wu Chen
- Department of Ultrasonic Imaging, the First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Feng-Qi Jiang
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin 150001, China.
| | - Hui Zhang
- Department of Radiology, the First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
7
|
Rodrigues FC, Kumar NVA, Hari G, Pai KSR, Thakur G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01775-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractCurcumin, a potent phytochemical derived from the spice element turmeric, has been identified as a herbal remedy decades ago and has displayed promise in the field of medicinal chemistry. However, multiple traits associated with curcumin, such as poor bioavailability and instability, limit its effectiveness to be accepted as a lead drug-like entity. Different reactive sites in its chemical structure have been identified to incorporate modifications as attempts to improving its efficacy. The diketo group present in the center of the structural scaffold has been touted as the group responsible for the instability of curcumin, and substituting it with a heterocyclic ring contributes to improved stability. In this study, four heterocyclic curcumin analogues, representing some broad groups of heterocyclic curcuminoids (isoxazole-, pyrazole-, N-phenyl pyrazole- and N-amido-pyrazole-based), have been synthesized by a simple one-pot synthesis and have been characterized by FTIR, 1H-NMR, 13C-NMR, DSC and LC–MS. To predict its potential anticancer efficacy, the compounds have been analyzed by computational studies via molecular docking for their regulatory role against three key proteins, namely GSK-3β—of which abnormal regulation and expression is associated with cancer; Bcl-2—an apoptosis regulator; and PR which is a key nuclear receptor involved in breast cancer development. One of the compounds, isoxazole-curcumin, has consistently indicated a better docking score than the other tested compounds as well as curcumin. Apart from docking, the compounds have also been profiled for their ADME properties as well as free energy binding calculations. Further, the in vitro cytotoxic evaluation of the analogues was carried out by SRB assay in breast cancer cell line (MCF7), out of which isoxazole-curcumin (IC50–3.97 µM) has displayed a sevenfold superior activity than curcumin (IC50–21.89 µM). In the collation of results, it can be suggested that isoxazole-curcumin behaves as a potential lead owing to its ability to be involved in a regulatory role with multiple significant cancer proteins and hence deserves further investigations in the development of small molecule-based anti-breast cancer agents.
Graphic abstract
Collapse
|
8
|
Establishment and Validation of the Detection of TERT Promoter Mutations by Human Gliomas U251 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3271395. [PMID: 34159191 PMCID: PMC8187059 DOI: 10.1155/2021/3271395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022]
Abstract
Gliomas are the most common type of primary brain tumor, yet the prognosis for glioma patients remains poor. Mutations in the promoter region of the telomerase reverse transcriptase gene (TERTp) are associated with diagnosis and poor prognosis in gliomas. Here, we developed a precise and rapid Sanger sequencing assay to screen or TERTp mutations. We established the Sanger sequencing approach for the detection of TERTp mutations based on human glioma cell lines U251 and assessed the analytical validation by determining the accuracy, sensitivity, precision, and specificity. In our study, we verified the accuracy of Sanger sequencing by the real-time polymerase chain reaction method. Our data showed that TERTp mutations were detected at an analytical sensitivity of 10% per mutant. The precision and specificity validation also showed the desired results. In total, 147 glioma patients were investigated for TERTp mutations, and of each patient, clinical data and molecular characteristics were analyzed. We found that anaplastic oligodendroglioma had the highest frequency of TERTp mutations (66.7%). No differences in TERTp mutation frequency were observed between frozen tissue specimens and formalin-fixed and paraffin-embedded tissue. TERTp mutations were associated with older patients (≥45 years), whereas isocitrate dehydrogenase (IDH) mutations were inclined to a younger age (<45 years), frontal location, and pathologic stage II-III patients. IDH mutations were significantly associated with O6-methylguanine-DNA methyltransferase (MGMT) methylation (P = 0.003) and lower Ki-67 protein expression (P = 0.011). Moreover, MGMT methylation was enriched in IDH-mutant/TERTp-mutant gliomas, and Ki-67 protein expression was the highest in the IDH-wild type/TERTp-mutant group. Taken together, the findings of this study indicate the establishment of a rapid, precise, and practical Sanger sequencing technique for TERTp mutations in gliomas that may show promising results in clinical applications.
Collapse
|
9
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang L, Liang J, Liu X, Wu J, Tan D, Hu W. Aloperine Exerts Antitumor Effects on Bladder Cancer in vitro. Onco Targets Ther 2020; 13:10351-10360. [PMID: 33116615 PMCID: PMC7568640 DOI: 10.2147/ott.s260215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Human bladder cancer is the most common malignant tumor of the urinary system and one of the 10 most common tumors of the whole body. Although most patients with bladder cancer exhibit a good prognosis with standard treatment, effective therapies for patients with a recurrent or advanced bladder cancer are unavailable. Therefore, highly effective drugs to treat such patients need to be developed. Aloperine (ALO), a natural compound isolated from Sophora alopecuroides, has antitumor properties. However, the role of ALO in human bladder cancer remains unclear. Methods In the present study, MTT was used to detect the cytotoxic effect of ALO on human BC cell line EJ and human urothelium cell line SV-HUC-1cells. Meanwhile, in order to investigate the effects of ALO on the proliferation, apoptosis, migration, and invasion of BC EJ cells and its mechanism by Cell Counting Kit-8 (CCK-8) assay, immunofluorescence, Hoechst 33342 staining, wound scratch assay, transwell migration and invasion assay, Western blot analysis. Results ALO can inhibit the proliferation and invasion of human bladder cancer EJ cells, and is low-toxic to human urothelium cells. Moreover, it can promote cellular apoptosis in vitro. Further analysis demonstrated the involvement of Caspase-dependent apoptosis following ALO treatment. ALO also downregulated the protein expression levels of Ras, p-Raf1 and p-Erk1/2. Conclusion ALO is a potential drug for human bladder cancer therapy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jun Liang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Xiaohua Liu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jianhua Wu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Daqing Tan
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Wei Hu
- Department of Urology, The First Affiliated Hospital of University of South of China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
11
|
Structure-Activity Relationship of Aloperine Derivatives as New Anti-Liver Fibrogenic Agents. Molecules 2020; 25:molecules25214977. [PMID: 33121156 PMCID: PMC7663597 DOI: 10.3390/molecules25214977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
Twenty-seven novel 12N-substituted aloperine derivatives were synthesized and investigated for their inhibitory effects on collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells, taking aloperine (1) as the hit. A structure-activity relationship (SAR) study disclosed that the introduction of suitable substituents on the 12N atom might enhance the activity. Compound 4p exhibited a good promise on down-regulating COL1A1 expression with the IC50 value of 16.5 μM. Its inhibitory activity against COL1A1 was further confirmed on both mRNA and protein levels. Meanwhile, it effectively inhibited the expression of other fibrogenic proteins, such as transforming growth factor β1 (TGF-β1) and smooth muscle actin (α-SMA). It also exhibited good in vivo safety profile with the oral LD50 value of 400 mg kg-1 in mice. The results initiated the anti-liver fibrogenic study of aloperine derivatives, and the key compound 4p was selected as a novel lead for further investigation against liver fibrogenesis.
Collapse
|
12
|
Li H, Xia T, Guan Y, Yu Y. Sevoflurane Regulates Glioma Progression by Circ_0002755/miR-628-5p/MAGT1 Axis. Cancer Manag Res 2020; 12:5085-5098. [PMID: 32669871 PMCID: PMC7335772 DOI: 10.2147/cmar.s242135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is a common malignant tumor worldwide. Sevoflurane (Sev) has been reported to inhibit the metastasis of glioma cells, but the underlying molecular mechanism needs further exploration. Methods Cell Counting Kit-8 (CCK8) assay was used to check cell viability. Flow cytometry assay was hired to check cell apoptosis. The protein levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), hexokinase 2 (HK2) and magnesium transporter 1 (MAGT1) in samples were measured by Western blot. The abilities of cell migration and invasion were estimated by transwell assay. Glucose colorimetric assay kit and lactate colorimetric assay kit were used to check glucose consumption and lactate production, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the levels of circular RNA (circRNA) circ_0002755 (also known as the circRNA1656) and microRNA (miR)-628-5p in samples. The interaction between miR-628-5p and circ_0002755 or MAGT1 was predicated by starBase, which was verified by the dual-luciferase reporter assay. Xenograft tumor model was established to explore the biological role of circ_0002755 in vivo. Results Sev inhibited cell viability, migration, invasion and promoted cell apoptosis, and also reduced glucose consumption and lactate production. Circ_0002755 was significantly upregulated in glioma tissues and cells, while its level was notably declined under Sev treatment. Besides, overexpression of circ_0002755 overturned Sev-mediated inhibitory effect on glioma progression. Further research indicated that circ_0002755 targeted miR-628-5p, and miR-628-5p targeted MAGT1, and Sev modulated glioma progression via circ_0002755/miR-628-5p/MAGT1 axis. Moreover, Sev hindered tumor growth in vivo. Conclusion Sev mediated glioma progression via circ_0002755/miR-628-5p/MAGT1 axis.
Collapse
Affiliation(s)
- Haoyi Li
- Department of Anaesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Tian Xia
- Department of Anaesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Yilin Guan
- Department of Anaesthesiology, Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning 116037, People's Republic of China
| | - Yao Yu
- Department of Anaesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| |
Collapse
|
13
|
Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1303524. [PMID: 32256634 PMCID: PMC7104124 DOI: 10.1155/2020/1303524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
As the spectrum of diseases keeps changing and life pace keeps going faster, the probability and frequency of diseases caused by human inflammatory reactions also keep increasing. How to develop effective anti-inflammatory drugs has become the hotspot of researches. It has been found that alkaloids from Chinese medical herbs have anti-inflammatory, analgesic, antitumor, anticonvulsant, diuretic, and antiarrhythmic effects, among which the anti-inflammatory effect is very prominent and commonly used in the treatment of rheumatoid arthritis, ankylosing spondylitis, and other rheumatic immune diseases, but its mechanism of action has not been well explained. Based on this, this paper will classify alkaloids according to structural types and review the plant sources, applicable diseases, and anti-inflammatory mechanisms of 16 kinds of alkaloids commonly used in clinical treatment, such as berberine, tetrandrine, and stephanine, with the aim of providing a reference for drug researches and clinical applications.
Collapse
|