1
|
Arai H, Wijonarko A, Katsuma S, Naka H, Kageyama D, Hornett EA, Hurst GDD. Evolution of Wolbachia male-killing mechanism within a host species. Curr Biol 2025:S0960-9822(25)00312-4. [PMID: 40209710 DOI: 10.1016/j.cub.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025]
Abstract
Male-killing bacterial symbionts, prevalent in arthropods, skew population sex ratios by selectively killing male progeny, profoundly impacting ecology and the evolution of their hosts. Male killing is a convergently evolved trait, with microbes evolving diverse male-killing mechanisms across host species with widely divergent sex determination pathways. A common evolutionary response to male-killing presence is the spread of suppressor mutations that restore male survival. In this study, we demonstrate the evolution of a novel male-killing mechanism that is insensitive to an existing male-killing suppressor. Hypolimnas bolina butterflies from Yogyakarta, Indonesia, showed extreme female-biased population sex ratio associated with high prevalence of a male-killing Wolbachia. This strain, wBol1Y, shared a very recent common ancestor with the previously characterized "suppressed" male-killing strain in the species, wBol1, but it retained its male-killing ability in the presence of the male-killing suppressor. The genome of wBol1Y differed from the suppressed wBol1 in carrying an additional prophage that included strong candidate genes for male killing. In vitro and in vivo data demonstrated that wBol1Y feminized splicing and expression of lepidopteran sex determination pathway genes and that the gene Hb-oscar-present on wBol1Y's unique prophage insert-was sufficient to disrupt the male sex determination pathway. Our study demonstrates that the diversity of male-killing mechanisms is a product both of interaction with varying insect sex determination systems and the evolution of male killing within a host species. Our data indicate that the male killer and host may be involved in escalating arms races, where spreading male-killing suppression drives the evolution of additional systems that reestablish male killing by the symbiont.
Collapse
Affiliation(s)
- Hiroshi Arai
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu 183-8509, Tokyo, Japan; National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan.
| | - Arman Wijonarko
- Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Hideshi Naka
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8550, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Emily A Hornett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
2
|
Hoffmann AA, Cooper BS. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 2024; 14:e11705. [PMID: 38975267 PMCID: PMC11224498 DOI: 10.1002/ece3.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
3
|
Rutagarama VP, Ireri PM, Sibomana C, Omufwoko KS, Martin SH, ffrench‐Constant RH, Eckardt W, Kaplin BK, Smith DAS, Gordon I. African Queens find mates when males are rare. Ecol Evol 2023; 13:e9956. [PMID: 37021082 PMCID: PMC10067808 DOI: 10.1002/ece3.9956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
In butterflies and moths, male-killing endosymbionts are transmitted from infected females via their eggs, and the male progeny then perish. This means that successful transmission of the parasite relies on the successful mating of the host. Paradoxically, at the population level, parasite transmission also reduces the number of adult males present in the final population for infected females to mate with. Here we investigate if successful female mating when males are rare is indeed a likely rate-limiting step in the transmission of male-killing Spiroplasma in the African Monarch, Danaus chrysippus. In Lepidoptera, successful pairings are hallmarked by the transfer of a sperm-containing spermatophore from the male to the female during copulation. Conveniently, this spermatophore remains detectable within the female upon dissection, and thus, spermatophore counts can be used to assess the frequency of successful mating in the field. We used such spermatophore counts to examine if altered sex ratios in the D. chrysippus do indeed affect female mating success. We examined two different field sites in East Africa where males were often rare. Surprisingly, mated females carried an average of 1.5 spermatophores each, regardless of male frequency, and importantly, only 10-20% remained unmated. This suggests that infected females will still be able to mate in the face of either Spiroplasma-mediated male killing and/or fluctuations in adult sex ratio over the wet-dry season cycle. These observations may begin to explain how the male-killing mollicute can still be successfully transmitted in a population where males are rare.
Collapse
Affiliation(s)
- Vincent P. Rutagarama
- Department of Biology, College of Science and TechnologyUniversity of RwandaKigaliRwanda
| | - Piera M. Ireri
- International Centre for Insect Physiology and EcologyNairobiKenya
| | - Constantin Sibomana
- Department of Biology, College of Science and TechnologyUniversity of RwandaKigaliRwanda
| | - Kennedy S. Omufwoko
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Simon H. Martin
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | | | | | - Beth K. Kaplin
- Department of Biology, College of Science and TechnologyUniversity of RwandaKigaliRwanda
- Center of Excellence in Biodiversity & Natural Resource ManagementUniversity of RwandaButareRwanda
| | | | - Ian Gordon
- Department of Biology, College of Science and TechnologyUniversity of RwandaKigaliRwanda
| |
Collapse
|
4
|
Richardson KM, Ross PA, Cooper BS, Conner WR, Schmidt T, Hoffmann AA. A male-killing Wolbachia endosymbiont is concealed by another endosymbiont and a nuclear suppressor. PLoS Biol 2023; 21:e3001879. [PMID: 36947547 PMCID: PMC10069767 DOI: 10.1371/journal.pbio.3001879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/03/2023] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii. MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia. A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D. pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them.
Collapse
Affiliation(s)
- Kelly M Richardson
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, United State of America
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, United State of America
| | - Tom Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Bruschini C, Edwards ED, Talavera G, Vaurasi VD, Latu GF, Dapporto L. A complete
COI
library of Samoan butterflies reveals layers of endemic diversity on oceanic islands. ZOOL SCR 2023. [DOI: 10.1111/zsc.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Claudia Bruschini
- ZEN Lab, Dipartimento di Biologia Università degli Studi di Firenze Sesto Fiorentino Italia
| | - Eric D. Edwards
- Department of Conservation Conservation House Wellington New Zealand
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB) CSIC‐Ajuntament de Barcelona Barcelona Spain
| | - Varea D. Vaurasi
- Faculty of Science, National University of Samoa To'omatagi Samoa
| | | | - Leonardo Dapporto
- ZEN Lab, Dipartimento di Biologia Università degli Studi di Firenze Sesto Fiorentino Italia
| |
Collapse
|
6
|
Hornett EA, Kageyama D, Hurst GDD. Sex determination systems as the interface between male-killing bacteria and their hosts. Proc Biol Sci 2022; 289:20212781. [PMID: 35414231 PMCID: PMC9005997 DOI: 10.1098/rspb.2021.2781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Arthropods host a range of sex-ratio-distorting selfish elements, including diverse maternally inherited endosymbionts that solely kill infected males. Male-killing heritable microbes are common, reach high frequency, but until recently have been poorly understood in terms of the host-microbe interaction. Additionally, while male killing should generate strong selection for host resistance, evidence of this has been scant. The interface of the microbe with host sex determination is integral to the understanding of how death is sex limited and how hosts can evolve evasion of male killing. We first review current knowledge of the mechanisms diverse endosymbionts use to induce male-specific death. We then examine recent evidence that these agents do produce intense selection for host nuclear suppressor elements. We argue, from our understanding of male-killing mechanisms, that suppression will commonly involve evolution of the host sex determination pathways and that the host's response to male-killing microbes thus represents an unrecognized driver of the diversity of arthropod sex determination. Further work is required to identify the genes and mechanisms responsible for male-killing suppression, which will both determine the components of sex determination (or other) systems associated with suppressor evolution, and allow insight into the mechanism of male killing itself.
Collapse
Affiliation(s)
- Emily A. Hornett
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK
- Vector Biology, LSTM, Liverpool L3 5QA, UK
| | | | - Gregory D. D. Hurst
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Male Age and Wolbachia Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. mBio 2021; 12:e0299821. [PMID: 34903056 PMCID: PMC8686834 DOI: 10.1128/mbio.02998-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene (cif) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia-density variation in two classic CI systems. wRi CI strength decreases slowly with Drosophila simulans male age (6%/day), but wMel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as wRi-infected males age, but both surprisingly increase as wMel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts wMel density), or host immune expression covary with age-dependent wMel densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence.
Collapse
|
8
|
Yoshida K, Sanada-Morimura S, Huang SH, Tokuda M. Silence of the killers: discovery of male-killing suppression in a rearing strain of the small brown planthopper, Laodelphax striatellus. Proc Biol Sci 2021; 288:20202125. [PMID: 33468006 DOI: 10.1098/rspb.2020.2125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a 'late' male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 : 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.
Collapse
Affiliation(s)
- Kazuki Yoshida
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.,Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | | | - Shou-Horng Huang
- Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Chiayi 60044, Taiwan, People's Republic of China
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.,Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
9
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
10
|
Arai H, Lin SR, Nakai M, Kunimi Y, Inoue MN. Closely Related Male-Killing and Nonmale-Killing Wolbachia Strains in the Oriental Tea Tortrix Homona magnanima. MICROBIAL ECOLOGY 2020; 79:1011-1020. [PMID: 31820073 DOI: 10.1007/s00248-019-01469-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are inherited intracellular bacteria that cause male-specific death in some arthropods, called male-killing. To date, three Wolbachia strains have been identified in the oriental tea tortrix Homona magnanima (Tortricidae, Lepidoptera); however, none of these caused male-killing in the Japanese population. Here, we describe a male-killing Wolbachia strain in Taiwanese H. magnanima. From field-collected H. magnanima, two female-biased host lines were established, and antibiotic treatments revealed Wolbachia (wHm-t) as the causative agent of male-killing. The wsp and MLST genes in wHm-t are identical to corresponding genes in the nonmale-killing strain wHm-c from the Japanese population, implying a close relationship of the two strains. Crossing the Japanese and Taiwanese H. magnanima revealed that Wolbachia genotype rather than the host genetic background was responsible for the presence of the male-killing phenotype. Quantitative PCR analyses revealed that the density of wHm-t was higher than that of other Wolbachia strains in H. magnanima, including wHm-c. The densities of wHm-t were also heterogeneous between host lines. Notably, wHm-t in the low-density and high-density lines carried identical wsp and MLST genes but had distinct lethal patterns. Furthermore, over 90% of field-collected lines of H. magnanima in Taiwan were infected with wHm-t, although not all host lines harboring wHm-t showed male-killing. The host lines that showed male-killing harbored a high density of Wolbachia compared to the host lines that did not show male-killing. Thus, the differences in the phenotypes appear to be dependent on biological and genetic characteristics of closely related Wolbachia strains.
Collapse
Affiliation(s)
- Hiroshi Arai
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Shiou Ruei Lin
- Department of Tea Agronomy Tea Research and Extension Station, 324 Chung-Hsing RD., Yangmei, Taoyuan, Taiwan
| | - Madoka Nakai
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Yasuhisa Kunimi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Maki N Inoue
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
11
|
Beckmann JF, Sharma GD, Mendez L, Chen H, Hochstrasser M. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 2019; 8:e50026. [PMID: 31774393 PMCID: PMC6881146 DOI: 10.7554/elife.50026] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Intracellular Wolbachia bacteria manipulate arthropod reproduction to promote their own inheritance. The most prevalent mechanism, cytoplasmic incompatibility (CI), traces to a Wolbachia deubiquitylase, CidB, and CidA. CidB has properties of a toxin, while CidA binds CidB and rescues embryonic viability. CidB is also toxic to yeast where we identified both host effects and high-copy suppressors of toxicity. The strongest suppressor was karyopherin-α, a nuclear-import receptor; this required nuclear localization-signal binding. A protein-interaction screen of Drosophila extracts using a substrate-trapping catalytic mutant, CidB*, also identified karyopherin-α; the P32 protamine-histone exchange factor bound as well. When CidB* bound CidA, these host protein interactions disappeared. These associations would place CidB at the zygotic male pronucleus where CI defects first manifest. Overexpression of karyopherin-α, P32, or CidA in female flies suppressed CI. We propose that CidB targets nuclear-protein import and protamine-histone exchange and that CidA rescues embryos by restricting CidB access to its targets.
Collapse
Affiliation(s)
| | - Gagan Deep Sharma
- Department of Entomology and Plant PathologyAuburn UniversityAuburnUnited States
| | - Luis Mendez
- Department of Entomology and Plant PathologyAuburn UniversityAuburnUnited States
| | - Hongli Chen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Mark Hochstrasser
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUnited States
| |
Collapse
|