1
|
Shareef SH. In Vivo Gastroprotective Upshots of the Novel Schiff Base CdCl2 (C14H21N3O2) Compound by Bax/HSP-70 Signaling and Inflammatory Cytokines. Cureus 2024; 16:e75963. [PMID: 39830532 PMCID: PMC11741513 DOI: 10.7759/cureus.75963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Synthesis of the original Schiff base CdCl2 (C14H21N3O2) compound (Schiff base complex) displays an extensive range of bioactivities and was predictably utilized to treat several syndromes. PURPOSE The goal of the existing experiment is to evaluate the gastroprotective effects of a novel Schiff base CdCl₂ (C14H21N3O2) compound in alcohol-induced gastric ulcers in rats by examining its antioxidant activity, anti-inflammatory effects, and modulation of key molecular markers, including heat shock protein-70 (HSP-70) and Bcl-2-associated X protein (Bax) proteins. METHODS Five groups of rats were utilized in the current study. Control and model groups were orally administered 10% Tween 20. The treated groups were orally administered 20 mg/kg omeprazole or Schiff base compound (25 or 50 mg/kg). One hour later, only the control group received oral 10% Tween 20, and the treated groups received oral (5 ml/cage) absolute alcohol. During the second hour, all rats were sacrificed. RESULTS All treated rats presented considerable improvement in alcohol-induced gastric injury recognized by decreasing ulcer index and raising % of ulcer inhibition. Increased mucus and gastric pH content and decreased ulcerated portion, reduced or non-appearance of edema, and leucocytes penetrated the subcutaneous layer. In stomach epithelium homogenate, the Schiff base compound obtainable significant upsurge superoxide dismutase (SOD), catalase (CAT) activities, considerable declining malondialdehyde (MDA) quantity. Moreover, the Schiff base compound raised the intensity of periodic acid-Schiff (PAS) stains gastric epithelium. Furthermore, the Schiff base compound formed up-regulated HSP-70 and down-regulated Bax proteins gastric epithelium Schiff base compound, reduced the level of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and improved the quantity of IL-10. Administering a high dose of 500 mg/kg Schiff base compound revealed the nontoxic nature of the compound in rats. CONCLUSION Schiff base compound exhibited gastroprotective effects attributed to its antioxidant nature, its capability to enhance mucus excretion, SOD and CAT, reduce MDA amount, up-regulate HSP-70 protein, down-regulate Bax protein, and inflammatory cytokines.
Collapse
Affiliation(s)
- Suhayla H Shareef
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
2
|
Al-Noshokaty TM, Abdelhamid R, Reda T, Alaaeldien A, Abdellatif N, Mansour A, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Sobhy MH, Mohammed OA, Abulsoud AI. Exploring the clinical potential of circulating LncRNAs in breast cancer: insights into primary signaling pathways and therapeutic interventions. Funct Integr Genomics 2024; 24:209. [PMID: 39508907 DOI: 10.1007/s10142-024-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer (BC) occupies the top spot among women on a global scale. The tumor has a significant degree of heterogeneity, displaying a notable prevalence of medication resistance, recurrence, and metastasis, rendering it one of the most lethal forms of malignant neoplasms. The timely identification, ongoing evaluation of therapeutic interventions, and accurate prediction of outcomes play crucial roles in determining the overall survival rates of women with BC. Nevertheless, the absence of precise biomarkers remains a significant determinant impacting the overall well-being and both the physical and emotional health of BC patients. Long noncoding RNA (lncRNA) exerts regulatory control over several genes and signaling pathways, hence assuming crucial roles in the development of neoplastic growth. Recently, research has indicated that the atypical expression of circulating lncRNAs in various biological bodily fluids has a noteworthy impact on the early detection, pathological categorization, staging, monitoring of therapy outcomes, and evaluation of prognosis in cases of BC. This article aims to assess the potential clinical utility of circulating lncRNAs in the context of BC focusing on specific primary signaling pathways; Wnt/β-catenin, Notch, TGF-β, and hedgehog (Hh), in addition to some therapeutic interventions.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mohamed Hossam Sobhy
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Kohan A, Keshtmand Z. Ameliorating effects of Lactobacillus probiotics on cadmium-induced hepatotoxicity, inflammation, and oxidative stress in Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:653-664. [DOI: 10.1007/s00580-024-03583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/04/2024] [Indexed: 01/06/2025]
|
4
|
Balaky STJ. Anti H. pylori, anti-secretory and gastroprotective effects of Thymus vulgaris on ethanol-induced gastric ulcer in Sprague Dawley rats. PLoS One 2024; 19:e0287569. [PMID: 38271407 PMCID: PMC10810472 DOI: 10.1371/journal.pone.0287569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/08/2023] [Indexed: 01/27/2024] Open
Abstract
The objectives of the present study were to evaluate the acute toxicity, gastroprotective, therapeutic, anti-inflammatory and anti H. pylori activities of T. vulgaris total plant extract against ethanol-induced gastric ulcers in Sprague Dawley rats. Animals were divided into five groups i.e G-1 (Normal Control), Group 2 (ulcer control) were administered orally with 0.5% Carboxymethylcellulose (CMC), Group 3 (omeprazole treated) was administered orally with 20 mg/kg of omeprazole and Groups 4 and 5 (Low dose and High dose of the extract) were administered orally with 250, and 500 mg/ kg of Thymus vulgaris extract, respectively. After 1 hour, the normal group was orally administered with 0.5% CMC (5 ml/kg), whereas absolute alcohol (5ml/ kg) was orally administered to the ulcer control group, omeprazole group, and experimental groups. Stomachs were examined macroscopically and microscopically. Grossly, rats pre-treated with T. vulgaris demonstrated significantly decreased ulcer area and an increase in mucus secretion and pH of gastric content compared with the ulcer control group. Microscopy of gastric mucosa in the ulcer control group showed severe damage to gastric mucosa with edema and leukocytes infiltration of the submucosal layer. However, rats pretreated with omeprazole or Thyme vulgaris exhibited a mild to moderate disruption of the surface epithelium and lower level of edema and leukocyte infiltration of the submucosal layer. The T. vulgaris extract caused up-regulation of Hsp70 protein, down-regulation of Bax protein, and intense periodic acid Schiff uptake of the glandular portion of the stomach. Gastric mucosal homogenate of rats pre-treated with T. vulgaris exhibited significantly increased superoxide dismutase (SOD) and catalase (CAT) activities while malondialdehyde (MDA) level was significantly decreased. Based on the results showed in this study, Thymus vulgaris extract can be proposed as the safe medicinal plants for use and it has considerable gastroprotective potential via stomach epithelium protection against gastric ulcers and stomach lesions.
Collapse
Affiliation(s)
- Salah Tofik Jalal Balaky
- Medical Microbiology Department, College of Health Sciences, Hawler Medical University, Kurdistan Region, Iraq
- Medical Analysis Department, Tishk International University, Erbil, Iraq
| |
Collapse
|
5
|
Kazemi Z, Rudbari HA, Moini N, Momenbeik F, Carnamucio F, Micale N. Indole-Containing Metal Complexes and Their Medicinal Applications. Molecules 2024; 29:484. [PMID: 38257397 PMCID: PMC10819683 DOI: 10.3390/molecules29020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Indole is an important element of many natural and synthetic molecules with significant biological activity. Nonetheless, the co-presence of transitional metals in organic scaffold may represent an important factor in the development of effective medicinal agents. This review covers some of the latest and most relevant achievements in the biological and pharmacological activity of important indole-containing metal complexes in the area of drug discovery.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Nakisa Moini
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 19938-91176, Iran;
| | - Fariborz Momenbeik
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Federica Carnamucio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
6
|
Gazwi HSS, Soltan OIA, Abdel-Hameed SM. Cakes fortified with papaya seeds effectively protects against CCl4-induced immunotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111511-111524. [PMID: 37815681 PMCID: PMC10625515 DOI: 10.1007/s11356-023-30172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Maintaining a robust immune system and safeguarding the liver from toxins are crucial for overall health. The study aimed to investigate the immunostimulant effects of papaya seed-enriched cakes (CPS) in countering carbon tetrachloride (CCl4)-induced immunocytotoxicity in rats (n = 48). The rats were divided into six groups (8 each): a control group (Group 1), rats fed cakes containing 15% papaya seeds (Group 2 - CPS), rats exposed only to CCl4 (Group 3 - CCl4), rats injected with CCl4 and administered silymarin (Group 4 - CCl4 + S), rats receiving both CCl4 and cakes with papaya seeds (Group 5 - CCl4 + CPS), and rats receiving both CCl4 and silymarin with papaya seed-enriched cakes (Group 6 - CCl4 + CPS + S). HPLC analysis of papaya seeds revealed the presence of ten polyphenol compounds, with quercetin, apigenin, and catechin identified as major flavonoids, along with pyrogallol, ellagic, and gallic acid as predominant phenolic acids. These compounds displayed potent antioxidant activity, attributed to the seeds' high total phenolic and flavonoid content. The administration of CCl4 significantly affected hematological parameters, liver enzymes, hepatic oxidative stress, levels of TNF-α, IL-6, IgG, as well as IgM. However, rats fed with CPS exhibited mitigation of CCl4-induced toxic effects on hematological parameters and hepatotoxicity. CPS consumption enhanced the antioxidant system, improved inflammatory markers, and immune parameters, restoring them to normal levels. Histopathological analysis confirmed CPS's ability to reduce CCl4-induced hepatocellular necrosis. Immunohistochemical assessment further revealed reduced immunoreactivity against cleaved caspase-3 expression and increased COX2 immunoreactivity, indicating hepatocellular regeneration in CPS. The combination of CPS and silymarin demonstrated even more notable improvements, suggesting augmented protective impacts against CCl4-induced immunosuppression and hepatotoxicity. In conclusion, CPS exhibited antioxidant properties and effectively protected against CCl4-induced immunotoxicity and hepatotoxicity, with additional benefits observed when combined with silymarin. These findings emphasize the potential health advantages of incorporating papaya seeds into food products, promoting immune system health, and safeguarding against liver damage induced by hazardous agents like CCl4.
Collapse
Affiliation(s)
- Hanaa S S Gazwi
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, 61519, Egypt.
| | - Osama I A Soltan
- Department of Food Science, Faculty of Agriculture, Minia University, El-Minia, 61519, Egypt
| | - Sanaa M Abdel-Hameed
- Department of Food Science, Faculty of Agriculture, Minia University, El-Minia, 61519, Egypt
| |
Collapse
|
7
|
Liang Z, Liu L, Zhou Y, Liu W, Lu Y. Research Progress on Bioactive Metal Complexes against ER-Positive Advanced Breast Cancer. J Med Chem 2023; 66:2235-2256. [PMID: 36780448 DOI: 10.1021/acs.jmedchem.2c01458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Breast cancer is the most prevalent cancer in women and represents a serious disease that is harmful to life and health. In 1977, with the approval of tamoxifen, endocrine therapy has become the main clinical treatment for ER-positive (ER+) breast cancer. Although patients initially respond well to endocrine therapies, drug resistance often emerges and side effects can be challenging. To overcome drug resistance, the exploration for new drugs is a priority. Metal complexes have demonstrated significant antitumor activities, and platinum complexes are widely used in the clinic against various cancers, including breast cancer. In this Perspective, the first section describes the classification and mechanism of endocrine therapy drugs for ER+ breast cancer, and the second section summarizes research since 2000 into metal complexes with activity toward ER+ breast cancer. Finally, we discuss the opportunities, challenges, and future directions for metal complexes in the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yanyu Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Hamad Shareef S, Al-Medhtiy MH, Al Rashdi AS, Aziz PY, Abdulla MA. Hepatoprotective Effect of Pinostrobin against Thioacetamide-Induced Liver Cirrhosis in Rats. Saudi J Biol Sci 2022; 30:103506. [DOI: 10.1016/j.sjbs.2022.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
9
|
Histopathological Evaluation of Annona muricata in TAA-Induced Liver Injury in Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10081613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This research in vivo assessed the impact of the ethanolic extract of Annona muricata (A. muricata) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in Sprague Dawley rats. The rats, gavaged precisely with two doses of A. muricata (250 mg/kg and 500 mg/kg) with TAA, presented a substantial reduction in the liver index and hepatocyte propagation, with much lower cell injury. These groups showed meaningfully down-regulated proliferating cell nuclear antigen (PCNA) in the liver and spleen, α-smooth muscle actin (α-SMA), and transforming growth factor-beta 1 (TGF-β1) in liver parenchymal tissue. The liver homogenate displayed enhanced antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) activity, along with a decrease in malondialdehyde (MDA) levels. The serum levels of bilirubin, total protein, albumin, and liver enzymes alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were returned to normal and were similar to that of the normal control and silymarin with TAA-treated groups. Oral acute toxicity revealed no evidence of any toxic symbols or mortality in rats, indicating the safety of A. muricata. Therefore, the normal microanatomy of hepatocytes, the clampdown of PCNA, α-SMA, TGF-β, improved antioxidant enzymes (SOD and CAT), and condensed MDA with repairs of liver biomarkers validate the hepatoprotective effect of A. muricata.
Collapse
|
10
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Amalia E, Diantini A, Endang Prabandari E, Waluyo D, Subarnas A. Caffeic Acid Phenethyl Ester as a DHODH Inhibitor and Its Synergistic Anticancer Properties in Combination with 5-Fluorouracil in a Breast Cancer Cell Line. J Exp Pharmacol 2022; 14:243-253. [PMID: 35910085 PMCID: PMC9329448 DOI: 10.2147/jep.s365159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction A combination of chemotherapy agents is the best choice in breast cancer treatment to increase the patient survival rate. 5-fluorouracil (5-FU) is one of the drugs applied in combination with other drugs to control and delay development of cancer cells. Nevertheless, the occurrence of multidrug resistance and dose-limiting cytotoxicity have limited the efficacy of 5-FU treatment. Therefore, the discovery of new anti-breast cancer drugs should be pursued. Objective To study potency of a promising naturally derived compound, caffeic acid phenethyl ester (CAPE), for breast cancer treatment in single and combination with 5-FU. Methods Cytotoxicity of CAPE, 5-FU, and 5-FU+CAPE was studied by in vitro MTT experiment in MCF-7 cell line, and RT-PCR analysis was used to evaluate the change in gene expression due to the treatment. Moreover, an enzymatic assay and molecular docking analysis were applied to evaluate the possible mechanism of substance-induced apoptosis. Results The study revealed that a single treatment of CAPE showed cytotoxicity with IC50 6.6 ± 1.0 µM and 6.5 ± 2.9 µM at 24 h and 48 h, respectively. Meanwhile, 5-FU showed cytostatic activity. The 5-FU + CAPE has a synergistic effect at 24 h treatment with a CI = 0.5 and an additive effect at 48 h treatment with CI = 1.0. CAPE was also found to enhances the mRNA expression of caspase-8 and BAX within 6 hours in combination with 5-FU compared to 5-FU treatment alone. Our study reveals a new mechanism of CAPE which is related to the inhibition of human dihydroorotate dehydrogenase (HsDHODH) with an IC50 of 120.7 ± 6.8 µM, by bound to the ubiquinone-binding site of the enzyme and could be responsible for inducing extrinsic and intrinsic apoptosis. Conclusion This study demonstrated the cytotoxicity of CAPE potential to induce apoptosis of breast cancer MCF-7 cell line single and cytotoxic-cytostatic combination with 5-FU. Therefore, further studies to develop CAPE and its derivatives will be required to discover new candidates for breast cancer agents.
Collapse
Affiliation(s)
- Eri Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Department of Pharmacology, Faculty of Science and Technology, Department of Pharmacy, Muhammadiyah University, Bandung, Indonesia.,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Danang Waluyo
- Research Center for Vaccine and Drug, National Research and Innovation Agency, Bogor, Indonesia
| | - Anas Subarnas
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
12
|
Gull S, Farooq K, Tayyeb A, Imran Arshad M, Shahzad N. Ethanolic extracts of Pakistani euphorbiaceous plants induce apoptosis in breast cancer cells through induction of DNA damage and caspase-dependent pathway. Gene 2022; 824:146401. [PMID: 35276236 DOI: 10.1016/j.gene.2022.146401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Numerous plants of Euphorbiaceae, thespurgefamily are traditionally used for the treatment of different diseases and recent studies also reported anti-oxidant, anti-inflammatory, and anti-tumor activities of these plants. However, the medicinal potential of several indigenous euphorbiaceous plants of Pakistan is not described yet. Therefore, we intended to evaluate the in vitro anti-breast cancer potential of 10 euphorbiaceous plants of Pakistan. METHODS Cytotoxic screening of ethanolic extracts of selected plants was performed by MTT assay. The qualitative phytochemical analysis was performed to find the major groups of chemicals responsible for cytotoxic activity. To determine the genotoxic effect of plant extracts, microscopic analysis was carried out. Flow cytometry and fluorescent microscopic analysis were done to detect apoptosis. To find out the expression analysis of cell cycle and cell death regulatory genes, quantitative real-time polymerase reaction (qRT-PCR) was performed. RESULTS Among the 10 tested plants, ethanolic extracts of Croton tiglium (CTL) and Euphorbia royleana (ERA) were found to possess the highest anti-proliferative activity against breast cancer cells (MDA-MB-231, MCF-7), with IC50 values 100 and 80 µg/mL respectively. The phytochemical analysis confirmed the presence of phenols, flavonoids, and steroids in both plant extracts, whereas, glycosides and saponins were found only in CTL and ERA, respectively. The cellular aberrations and nuclear morphologies with a distinct DNA laddering pattern substantiated the genotoxic effects. Furthermore, our data showed that CTL and ERA induce cell cycle arrest at the G1/S phase by down-regulating the CDK4 and Cyclin D1 expression followed by caspase-dependent induction of apoptosis in both MCF-7 and MDA-MB-231 cells. However, based on the activation of initiator and executioner caspases, two distinct types of apoptotic pathways are proposed for these plants. The CTL prompted extrinsic while ERA triggered the intrinsic pathways of apoptosis. CONCLUSION Our data demonstrate the strong anti-proliferative and caspase-dependent apoptotic potential of CTL and ERA against breast cancer cells. Further studies are suggested to find clinical implications of these plants in breast cancer therapeutic.
Collapse
Affiliation(s)
- Sheereen Gull
- School of Biological Sciences, University of the Punjab, 54000 Lahore, Pakistan.
| | - Kokab Farooq
- School of Biological Sciences, University of the Punjab, 54000 Lahore, Pakistan.
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, 54000 Lahore, Pakistan.
| | | | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, 54000 Lahore, Pakistan.
| |
Collapse
|
13
|
Narayanan P, Farghadani R, Nyamathulla S, Rajarajeswaran J, Thirugnanasampandan R, Bhuwaneswari G. Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line. J Biochem Mol Toxicol 2022; 36:e23008. [PMID: 35253318 DOI: 10.1002/jbt.23008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is one of the most devastating of all malignancies with poor prognosis and high mortality rates worldwide. Thymoquinone, plumbagin and juglone, which are naturally occurring quinones, have been reported for their promising anticancer effect on different cancer cells. However, their mechanism of action and antimetastatic effects are largely unknown against the human pancreatic cancer cell line (PANC-1). In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay revealed a dose-dependent decrease of viability in quinone-treated PANC-1 cells. In addition, the assessment of changes in cells has demonstrated an occurrence of typical apoptotic morphology in treated PANC-1 cells compared with control. Besides this, the apoptosis induction was further quantitatively confirmed through flow cytometry analysis. Furthermore, thymoquinone, plumbagin and juglone were evaluated for their influence on reactive oxygen species (ROS) generation through 2,7-dichlorofluorescein diacetate (DCFDA) staining and they dramatically increased the intracellular ROS level in treated PANC-1 cells, suggesting the critical role of ROS in their apoptosis induction. This study also demonstrated the wound healing potential of these compounds and inhibited PANC-1 cell migration in a time-dependent manner compared with control. This inhibition was correlated with reduced expression of matrix metalloproteinase-9 (MMP-9) in juglone-treated cells detected through gelatin zymography. In conclusion, thymoquinone, plumbagin and juglone significantly inhibited cell growth and induced ROS-mediated apoptosis in PANC-1 cells. In addition, they could be potent antimetastatic agents due to their anti-migratory effect against PANC-1 human pancreatic cancer cells.
Collapse
Affiliation(s)
- Prasad Narayanan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Shaik Nyamathulla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - R Thirugnanasampandan
- Postgraduate and Research Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| | - Gunasekaran Bhuwaneswari
- Postgraduate and Research Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Aroua LM, Al-Hakimi AN, Abdulghani MA, Alhag SK. Elaboration of novel urea bearing schiff bases as potent in vitro anticancer candidates with low in vivo acute oral toxicity. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel series of urea Schiff base derivatives were synthesized via the condensation of o-phenylenediamine, naphthyl isocyanate and appropriate aryl aldehyde. The results of the in vitro cytotoxic activities of compounds 5a–h against cancer cells lines PC3, SKOV-3 and HeLa, revealed that almost all compounds exhibited good to moderate activities Compound 5g owing bromine atom at p-position displayed higher activity compared to homolog 5b possessing chlorine atom due to adequate diameter of bromine which is more favourable than chlorine for the inhibition activity. In addition, compound 5h is the best candidate of this series exhibiting excellent activity for three cancer cells lines. Compound 5h demonstrated also an excellent activity with IC50 value of 0.6±0.3μg/mL for prostate cancer cell line PC3 and it is considered more effective than the standard drug doxorubicin Dox (IC50 = 2.6±0.03μg/mL). The most active compound 5h displayed the best activity against ovarian cancer cell line SKOV3 with IC50 = 1.8±0.2μg/mL. This results are higher than clinically used drug Dox (IC50. 2.2±0.02μg/mL). The results of screening activities cytotoxic effect toward cervix cancer cell line HeLa, affirm that compound 5h manifest an activity with IC50 value of 2.2±0.4μg/mL comparable to Dox (IC50. 1.9±0.04μg/mL). In the current study, in vivo acute oral toxicity assessment of urea Schiff base hybrid compounds 5a – h indicated that there was no mortality on treated female mice during 14 days assessment test compared with the vehicle-treated group confirming the safety with LD50 greater than 2000 mg/kg. In the actual study, the results affirmed that compounds 5a–h manifested in vivo no toxicity to saint cells, the compounds 5b, 5g and 5h presented higher anticancer activities against three cancer cells which authorizes promoters to use them as candidate anticancer agents.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar, Tunis Tunisia
- Carthage University, Department of Chemistry, Faculty of Sciences of Bizerte, Jarzouna, Tunisia
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, Buraydah, Qassim, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mahfoudh A.M. Abdulghani
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Kingdom of Saudi Arabia
| | - Sadeq K. Alhag
- Department of Biology, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
- Department of Biology, College of Science, Ibb University, Yemen
| |
Collapse
|
16
|
Bradosty SW, Hamad SW, Agha NFS, Shaikh FK, Qadir Nanakali NM, Aziz PY, Salehen N, Suzergoz F, Abdulla MA. In vivo hepatoprotective effect of Morinda elliptica stem extract against liver fibrosis induced by thioacetamide. ENVIRONMENTAL TOXICOLOGY 2021; 36:2404-2413. [PMID: 34436826 DOI: 10.1002/tox.23353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Morinda elliptica L. (Rubiaceae) is a phytomedicinal herb, used to treat gastrointestinal complications in Peninsular Malaysia. The study evaluates the in vivo hepatoprotective activity of ethanolic extract of M. elliptica stem in thioacetamide (TAA) induced liver fibrosis in male Sprague Drawly rats. Thirty adult rats were divided into five groups of six rats each. Rats of the normal control group received intraperitoneal injections (i. p.) of vehicle 10% Tween-20, 5 ml/kg, and hepatotoxic group 200 mg/kg TAA three times per week respectively. Three supplementary groups were treated with TAA plus daily oral silymarin (50 mg/kg) or M. elliptica (250 or 500 mg/kg). After 8 weeks of treatment, all rats were sacrificed. Liver fibrosis was assessed by gross macroscopic and microscopic tissue analysis, histopathological, and biochemical analysis. The livers of the TAA treated group showed uniform coarse granules, hepatocytic necrosis with lymphocytes infiltration. Contrary, the livers of M. elliptica treated groups (250 and 500 mg/kg) were much smoother and the cell damage was much lesser. The livers of M. elliptica treated groups rats showed elevated activity of SOD and CAT with a significant decrease in MDA level at p < .0001. The level of liver damage parameters, that is, ALP, ALT, and AST, bilirubin, total protein, and albumin were restored to the normal comparable to silymarin. M. elliptica stem extract significantly promoted normal rat liver architecture with significant perfections in biochemical parameters. The molecular contents of M. elliptica with hepatoprotective influence could be discovered, is the future prospective of this study.
Collapse
Affiliation(s)
- Sarwan W Bradosty
- Department of Community Health, College of Health Technology, Cihan University-Erbil, Kurdistan Region, Iraq
- Department of Biology, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey
| | - Saber W Hamad
- Department of Field Crops Production, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Nabaz Fisal Shakir Agha
- Department of Anesthesia, Erbil Medical Technical Institute, Erbil Polytechnic University, Iraq
| | - Faiyaz Khudaboddin Shaikh
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Nadir Mustafa Qadir Nanakali
- Department of General Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Peshawa Yunis Aziz
- Department of Medical Laboratory Science, Technical college of Applied Science, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Nur'Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faruk Suzergoz
- Department of Biology, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey
| | - Mahmood Ameen Abdulla
- Department of General Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| |
Collapse
|
17
|
Matela G. Schiff Bases and Complexes: A Review on Anti-Cancer Activity. Anticancer Agents Med Chem 2021; 20:1908-1917. [PMID: 32379596 DOI: 10.2174/1871520620666200507091207] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Development in the field of bio-inorganic chemistry increased the interest in Schiff base and its complexes due to its biological importance in many fields, including anticancer activity. Discovery of the antitumor activity of Schiff base and its complexes against various tumor cell lines fascinates the researchers to develop new anticancer drugs without any side effects. Thus, the present review focuses on the anticancer activity of Schiff bases and their metal complexes.
Collapse
Affiliation(s)
- Garima Matela
- Department of Chemistry, Kumaun University, GDC Jainti-263626 Almora, Uttarakhand, India
| |
Collapse
|
18
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
19
|
Abood WN, Bradosty SW, Shaikh FK, Salehen N, Farghadani R, Agha NFS, Al-Medhtiy MH, Kamil TDA, Agha AS, Abdulla MA. Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver cirrhosis in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
The importance of indole and azaindole scaffold in the development of antitumor agents. Eur J Med Chem 2020; 203:112506. [PMID: 32688198 DOI: 10.1016/j.ejmech.2020.112506] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
With some indoles and azaindoles being successfully developed as anticancer drugs, the design and synthesis of indole and azaindole derivatives with remarkable antitumor activity has received increasing attention and significant progress has been made. This paper reviews the recent progress in the study of tumorigenesis, mechanism of actions and structure activity relationships about anticancer indole and azindole derivatives. Combining structure activity relationships and molecular targets-related knowledge, this review will help researchers design more effective, safe and cost-effective anticancer indoles and azindoles agents.
Collapse
|
21
|
Ouyang Q, Cui Y, Yang S, Wei W, Zhang M, Zeng J, Qu F. lncRNA MT1JP Suppresses Biological Activities of Breast Cancer Cells in vitro and in vivo by Regulating the miRNA-214/RUNX3 Axis. Onco Targets Ther 2020; 13:5033-5046. [PMID: 32581560 PMCID: PMC7280253 DOI: 10.2147/ott.s241503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The purpose of our research was to evaluate MT1JP in breast cancer. Material and Methods For clinical purpose, tissues were collected, and a correlation analysis ofMT1JP and miRNA-214 gene expressions was conducted. Using an in vitro study, MDA-MB-231 and MCF-7 cell lines were used as research objects in our research. Colony, flow cytometry, TUNEL, transwell, adhesion and wound healing assay were used to discuss the biological activities of the cells. In an in vivo study, tumor weight and volume were measured, and cell apoptosis was measured by TUNEL assay. The relative mechanism's proteins were evaluated by Western blotting or immunohistochemistry assay. Results Compared with adjacent tissues, MT1JP and miRNA-214 gene expressions were significantly different (P<0.001, respectively). By in vitro and in vivo studies, the biological activities of the cells were significantly decreased in MDA-MB-231 and MCF-7 cell lines with MT1JP overexpression. The relative mechanism was correlated with miRNA-214/RUNX3 axis. Conclusion The overexpression of MT1JP suppresses the biological activities of breast cancer cells by regulation miRNA-214/RUNX3 axis in vitro and vivo study.
Collapse
Affiliation(s)
- Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Yanru Cui
- Department of Physiology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Mingyue Zhang
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Jie Zeng
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi, China Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 330009, People's Republic of China
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| |
Collapse
|
22
|
Babahan I, Özmen A, Aksel M, Bilgin MD, Gumusada R, Gunay ME, Eyduran F. A novel bidentate ligand containing oxime, hydrazone and indole moieties and its BF
2
+
bridged transition metal complexes and their efficiency against prostate and breast cancer cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ilknur Babahan
- Department of Chemistry, Faculty of Arts and SciencesAdnan Menderes University Aydin Turkey 09010
| | - Ali Özmen
- Department of Biology, Faculty of Arts and SciencesAdnan Menderes University Aydin Turkey 09010
| | - Mehran Aksel
- Department of Biophysics, Faculty of MedicineAdnan Menderes University Aydin Turkey 09010
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of MedicineAdnan Menderes University Aydin Turkey 09010
| | - Rukiye Gumusada
- Department of Chemistry, Faculty of Arts and SciencesAdnan Menderes University Aydin Turkey 09010
| | - Muhammet Emin Gunay
- Department of Chemistry, Faculty of Arts and SciencesAdnan Menderes University Aydin Turkey 09010
| | - Fatih Eyduran
- Department of Chemistry, Faculty of Arts and SciencesAdnan Menderes University Aydin Turkey 09010
| |
Collapse
|