1
|
Hsiao YT, Chen TC, Yu PH, Huang DS, Hu FR, Chuong CM, Chang FC. Connectivity between nidopallium caudolateral and visual pathways in color perception of zebra finches. Sci Rep 2020; 10:19382. [PMID: 33168854 PMCID: PMC7653952 DOI: 10.1038/s41598-020-76542-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
Researchers demonstrated an elegant ability for red discrimination in zebra finches. It is interested to understand whether red activates exhibit much stronger response than other colors in neural network levels. To reveal the question, local field potentials (LFPs) was recorded and analyzed in two visual pathways, the thalamofugal and the tectofugal pathways, of zebra finches. Human studies demonstrate visual associated telencephalons communicate with higher order brain areas such as prefrontal cortex. The present study determined whether a comparable transmission occurs in zebra finches. Telencephalic regions of the thalamofugal (the visual Wulst) and the tectofugal pathway (the entopallium) with their higher order telencephalon, nidopallium caudolateral (NCL) were simultaneously recorded. LFPs of relay nuclei (the nucleus rotundus, ROT) of tectofugal pathway were also acquired. We demonstrated that LFP powers in the tectofugal pathway were higher than those in the thalamofugal pathway when illuminating blue lights. In addition, the LFP synchronization was stronger between the entopallium and NCL. LFPs also revealed a higher Granger causality from the direction of entopallium to NCL and from ROT to entopallium. These results suggest that zebra finches' tectofugal pathway predominately processing color information from ROT to NCL, relayed by entopallium, and blue could trigger the strongest response.
Collapse
Affiliation(s)
- Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Huan Yu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ding-Siang Huang
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|