1
|
Fremuntova Z, Hanusova ZB, Soukup J, Mosko T, Matej R, Holada K. Simple 3D spheroid cell culture model for studies of prion infection. Eur J Neurosci 2024; 60:4437-4452. [PMID: 38887188 DOI: 10.1111/ejn.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Castle AR, Kang SG, Eskandari-Sedighi G, Wohlgemuth S, Nguyen MA, Drucker DJ, Mulvihill EE, Westaway D. Beta-endoproteolysis of the cellular prion protein by dipeptidyl peptidase-4 and fibroblast activation protein. Proc Natl Acad Sci U S A 2023; 120:e2209815120. [PMID: 36574660 PMCID: PMC9910601 DOI: 10.1073/pnas.2209815120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
The cellular prion protein (PrPC) converts to alternatively folded pathogenic conformations (PrPSc) in prion infections and binds neurotoxic oligomers formed by amyloid-β α-synuclein, and tau. β-Endoproteolysis, which splits PrPC into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2Sc) accumulates in the brain during prion infections, seemingly comprising the majority of PrPSc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrPC β-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrPC's N-terminal domain. For wild-type mouse and human PrPC substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrPC were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2Sc and total PrPSc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrPC.
Collapse
Affiliation(s)
- Andrew R. Castle
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ONM5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ONM5S 2J7, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| |
Collapse
|
3
|
The E3 Ubiquitin Ligase TRAF6 Interacts with the Cellular Prion Protein and Modulates Its Solubility and Recruitment to Cytoplasmic p62/SQSTM1-Positive Aggresome-Like Structures. Mol Neurobiol 2022; 59:1577-1588. [PMID: 35000151 DOI: 10.1007/s12035-021-02666-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
The cellular prion protein (PrPC) is a ubiquitous glycoprotein highly expressed in the brain where it is involved in neurite outgrowth, copper homeostasis, NMDA receptor regulation, cell adhesion, and cell signaling. Conformational conversion of PrPC into its insoluble and aggregation-prone scrapie form (PrPSc) is the trigger for several rare devastating neurodegenerative disorders, collectively referred to as prion diseases. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To better dissect the role of ubiquitination in PrPC physiology, we focused on the E3 RING ubiquitin ligase tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6). Here, we report that PrPC interacts with TRAF6 both in vitro, in cells, and in vivo, in the mouse brain. Transient overexpression of TRAF6 indirectly modulates PrPC ubiquitination and triggers redistribution of PrPC into the insoluble fraction. Importantly, in the presence of wild-type TRAF6, but not a mutant lacking E3 ligase activity, PrPC accumulates into cytoplasmic aggresome-like inclusions containing TRAF6 and p62/SQSTM1. Our results suggest that TRAF6 ligase activity could exert a role in the regulation of PrPC redistribution in cells under physiological conditions. This novel interaction may uncover possible mechanisms of cell clearance/reorganization in prion diseases.
Collapse
|
4
|
The Cellular Prion Protein Increases the Uptake and Toxicity of TDP-43 Fibrils. Viruses 2021; 13:v13081625. [PMID: 34452489 PMCID: PMC8402629 DOI: 10.3390/v13081625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Cytoplasmic aggregation of the primarily nuclear TAR DNA-binding protein 43 (TDP-43) affects neurons in most amyotrophic lateral sclerosis (ALS) and approximately half of frontotemporal lobar degeneration (FTLD) cases. The cellular prion protein, PrPC, has been recognized as a common receptor and downstream effector of circulating neurotoxic species of several proteins involved in neurodegeneration. Here, capitalizing on our recently adapted TDP-43 real time quaking induced reaction, we set reproducible protocols to obtain standardized preparations of recombinant TDP-43 fibrils. We then exploited two different cellular systems (human SH-SY5Y and mouse N2a neuroblastoma cells) engineered to express low or high PrPC levels to investigate the link between PrPC expression on the cell surface and the internalization of TDP-43 fibrils. Fibril uptake was increased in cells overexpressing either human or mouse prion protein. Increased internalization was associated with detrimental consequences in all PrP-overexpressing cell lines but was milder in cells expressing the human form of the prion protein. As described for other amyloids, treatment with TDP-43 fibrils induced a reduction in the accumulation of the misfolded form of PrPC, PrPSc, in cells chronically infected with prions. Our results expand the list of misfolded proteins whose uptake and detrimental effects are mediated by PrPC, which encompass almost all pathological amyloids involved in neurodegeneration.
Collapse
|
5
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
6
|
Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB, Filipova M, Cervenakova L, Holada K. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 2019; 112:1-21. [PMID: 31736091 DOI: 10.1111/boc.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johanka Kucerova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Kostelanska
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Zhang Y, Zhao Y, Zhang L, Yu W, Wang Y, Chang W. Cellular Prion Protein as a Receptor of Toxic Amyloid-β42 Oligomers Is Important for Alzheimer's Disease. Front Cell Neurosci 2019; 13:339. [PMID: 31417361 PMCID: PMC6682659 DOI: 10.3389/fncel.2019.00339] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022] Open
Abstract
The pathological features of Alzheimer's disease (AD) include senile plaques induced by amyloid-β (Aβ) protein deposits, neurofibrillary tangles formed by aggregates of hyperphosphorylated tau proteins and neuronal cell loss in specific position within the brain. Recent observations have suggested the possibility of an association between AD and cellular prion protein (PrP C ) levels. PrP C is a high affinity receptor for oligomeric Aβ and is important for Aβ-induced neurotoxicity and thus plays a critical role in AD pathogenesis. The determination of the relationship between PrP C and AD and the characterization of PrP C binding to Aβ will facilitate the development of novel therapies for AD.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yanfang Zhao
- School for Life Science, Institute of Biomedical Research, Shandong University of Technology, Zibo, China
| | - Lei Zhang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yu Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Amin L, Nguyen XTA, Rolle IG, D'Este E, Giachin G, Tran TH, Šerbec VČ, Cojoc D, Legname G. Characterization of prion protein function by focal neurite stimulation. J Cell Sci 2016; 129:3878-3891. [PMID: 27591261 DOI: 10.1242/jcs.183137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
The cellular prion protein (PrPC), encoded by the PRNP gene, is a ubiquitous glycoprotein, which is highly expressed in the brain. This protein, mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neurite outgrowth. By using a novel focal stimulation technique, we explored the potential function of PrPC, in its soluble form, as a signaling molecule. Thus, soluble recombinant prion proteins (recPrP) encapsulated in micro-vesicles were released by photolysis near the hippocampal growth cones. Local stimulation of wild-type growth cones with full-length recPrP induced neurite outgrowth and rapid growth cone turning towards the source. This effect was shown to be concentration dependent. Notably, PrPC-knockout growth cones were insensitive to recPrP stimulation, but this property was rescued in PrP-knockout growth cones expressing GFP-PrP. Taken together, our findings indicate that recPrP functions as a signaling molecule, and that its homophilic interaction with membrane-anchored PrPC might promote neurite outgrowth and facilitate growth cone guidance.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Xuan T A Nguyen
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Irene Giulia Rolle
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Elisa D'Este
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Gabriele Giachin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Vladka Čurin Šerbec
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Dan Cojoc
- Optical Manipulation (OM)-Lab, Institute of Materials (IOM), National Research Council (CNR), I-34149 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| |
Collapse
|