1
|
Guo H, Tao W, Gao H, Chen L, Zhong X, Tang M, Gao G, Liang T, Zhang X. Physiological traits, gene expression responses, and proteomics of rice varieties varying in heat stress tolerance at the flowering stage. FRONTIERS IN PLANT SCIENCE 2024; 15:1489331. [PMID: 39703554 PMCID: PMC11656201 DOI: 10.3389/fpls.2024.1489331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Introduction/Background Global warming greatly limits the productivity of rice. Rice plants are highly sensitive to heat stress at the flowering stage. The selection of heat-tolerant varieties is considered the most effective approach for ensuring global food security in the coming decades. Methods Based on previous screening and QTL localization results, we selected tolerant varieties (Huang Huazhan, HZ) and susceptible varieties (Yang Dao6, YD) of rice and studied their physiological characteristics, gene expression responses, and proteomic differences of their anthers under heat stress. The differentially expressed proteins (DEPs) were validated by real-time PCR. Results The activities of the antioxidant enzymes CAT, SOD, POD, and APX were 8.36%, 9.56%, 20.61%, and 25.34% higher in HZ than in YD under heat stress, respectively. Similarly, the content of proline and soluble sugar was 8.32% and 14.47% higher in HZ than in YD, respectively. The content of MDA and H2O2 was 8.11% and 39.5% lower in HZ than in YD, respectively. The ratio of endogenous GA3/ABA in HZ was 10.65, which was significantly higher than that of YD (3.84). In addition, we validated the candidate genes LOC_Os08g07010 and LOC_Os08g07440 that our team located in 2021, and the result showed that the expression of these two heat-tolerant genes in the anthers was significantly higher in HH than in YH. DEPs involved in the response to heat stress were identified by TMT proteomics, five upregulated and three downregulated differential expression proteins in HH. DEPs were verified by RT-qPCR. Discussion These results provide new insights into the physiological characteristics, dominant DEPs, and gene expression responses in both rice varieties under heat stress. Our results indicate that the antioxidant and osmoregulatory capacities, the ratio of endogenous GA3 and ABA, these DEPs are mainly involved in the pathways of phenylpropanoid biosynthesis, ubiquitin-mediated proteolysis, carbohydrate metabolism, thiamine metabolism, protein processing in the endoplasmic reticulum, and folding, sorting, and degradation were upregulated to a greater degree in HZ than in YD. Additional studies were performed to clarify the roles of these proteins in response to heat stress.
Collapse
Affiliation(s)
- Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Tao
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiyong Gao
- Bureau of Agriculture and Rural Affairs of Xiangfen, Xiangfen, China
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoyuan Zhong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Maoyan Tang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guoqing Gao
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianfeng Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoli Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
2
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
3
|
Smet D, Opdebeeck H, Vandepoele K. Predicting transcriptional responses to heat and drought stress from genomic features using a machine learning approach in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1212073. [PMID: 37528982 PMCID: PMC10390317 DOI: 10.3389/fpls.2023.1212073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved various mechanisms to adapt to adverse environmental stresses, such as the modulation of gene expression. Expression of stress-responsive genes is controlled by specific regulators, including transcription factors (TFs), that bind to sequence-specific binding sites, representing key components of cis-regulatory elements and regulatory networks. Our understanding of the underlying regulatory code remains, however, incomplete. Recent studies have shown that, by training machine learning (ML) algorithms on genomic sequence features, it is possible to predict which genes will transcriptionally respond to a specific stress. By identifying the most important features for gene expression prediction, these trained ML models allow, in theory, to further elucidate the regulatory code underlying the transcriptional response to abiotic stress. Here, we trained random forest ML models to predict gene expression in rice (Oryza sativa) in response to heat or drought stress. Apart from thoroughly assessing model performance and robustness across various input training data, the importance of promoter and gene body sequence features to train ML models was evaluated. The use of enriched promoter oligomers, complementing known TF binding sites, allowed us to gain novel insights in DNA motifs contributing to the stress regulatory code. By comparing genomic feature importance scores for drought and heat stress over time, general and stress-specific genomic features contributing to the performance of the learned models and their temporal variation were identified. This study provides a solid foundation to build and interpret ML models accurately predicting transcriptional responses and enables novel insights in biological sequence features that are important for abiotic stress responses.
Collapse
Affiliation(s)
- Dajo Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Helder Opdebeeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Bhardwaj R, Lone JK, Pandey R, Mondal N, Dhandapani R, Meena SK, Khan S. Insights into morphological and physio-biochemical adaptive responses in mungbean ( Vigna radiata L.) under heat stress. Front Genet 2023; 14:1206451. [PMID: 37396038 PMCID: PMC10308031 DOI: 10.3389/fgene.2023.1206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mungbean (Vigna radiata L. Wilczek) is an important food legume crop which contributes significantly to nutritional and food security of South and Southeast Asia. The crop thrives in hot and humid weather conditions, with an optimal temperature range of 28°-35°C, and is mainly cultivated under rainfed environments. However, the rising global temperature has posed a serious threat to mungbean cultivation. Optimal temperature is a vital factor in cellular processes, and every crop species has evolved with its specific temperature tolerance ability. Moreover, variation within a crop species is inevitable, given the diverse environmental conditions under which it has evolved. For instance, various mungbean germplasm can grow and produce seeds in extreme ambient temperatures as low as 20°C or as high as 45°C. This range of variation in mungbean germplasm for heat tolerance plays a crucial role in developing heat tolerant and high yielding mungbean cultivars. However, heat tolerance is a complex mechanism which is extensively discussed in this manuscript; and at the same time individual genotypes have evolved with various ways of heat stress tolerance. Therefore, to enhance understanding towards such variability in mungbean germplasm, we studied morphological, anatomical, physiological, and biochemical traits which are responsive to heat stress in plants with more relevance to mungbean. Understanding heat stress tolerance attributing traits will help in identification of corresponding regulatory networks and associated genes, which will further help in devising suitable strategies to enhance heat tolerance in mungbean. The major pathways responsible for heat stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ragini Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| | - Jafar K Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nupur Mondal
- Shivaji College, University of Delhi, New Delhi, India
| | - R Dhandapani
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Surendra Kumar Meena
- Division of Crop Improvement, ICAR-Indian Grassland and Research Institute, Jhansi, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| |
Collapse
|
5
|
Li R, Nie S, Zhang N, Tian M, Zhang L. Transcriptome Analysis Reveals a Major Gene Expression Pattern and Important Metabolic Pathways in the Control of Heterosis in Chinese Cabbage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1195. [PMID: 36904055 PMCID: PMC10005390 DOI: 10.3390/plants12051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Although heterosis is commonly used in Chinese cabbage, its molecular basis is poorly understood. In this study, 16Chinese cabbage hybrids were utilized as test subjects to explore the potential molecular mechanism of heterosis. RNA sequencing revealed 5815-10,252 differentially expressed genes (DEGs) (female parent vs. male parent), 1796-5990 DEGs (female parent-vs-hybrid), and 2244-7063 DEGs (male parent vs. hybrid) in 16 cross combinations at the middle stage of heading. Among of them, 72.83-84.20% DEGs conformed to the dominant expression pattern, which is the predominant expression pattern in hybrids. There were 13 pathways in which DEGs were significantly enriched in most cross combinations. Among them, the plant-pathogen interaction (ko04626) and circadian rhythm-plant (ko04712)were significantly enriched by DEGs in strong heterosis hybrids. WGCNA also proved that the two pathways were significantly related to heterosis in Chinese cabbage.
Collapse
|
6
|
Magar MM, Liu H, Yan G. Genome-Wide Analysis of AP2/ERF Superfamily Genes in Contrasting Wheat Genotypes Reveals Heat Stress-Related Candidate Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:853086. [PMID: 35498651 PMCID: PMC9044922 DOI: 10.3389/fpls.2022.853086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 06/09/2023]
Abstract
The AP2/ERF superfamily is one of the largest groups of transcription factors (TFs) in plants, which plays important roles in regulating plant growth and development under heat stress. A complete genome-wide identification, characterization, and expression analysis of AP2/ERF superfamily genes focusing on heat stress response were conducted in bread wheat. This study identified 630 putative AP2/ERF superfamily TF genes in wheat, with 517 genes containing well-defined AP2-protein domains. They were classified into five sub-families, according to domain content, conserved motif, and gene structure. The unique genes identified in this study were 112 TaERF genes, 77 TaDREB genes, four TaAP2 genes, and one TaRAV gene. The chromosomal distribution analysis showed the unequal distribution of TaAP2/ERF genes in 21 wheat chromosomes, with 127 pairs of segmental duplications and one pair of tandem duplication, highly concentrated in TaERF and TaDREB sub-families. The qRT-PCR validation of differentially expressed genes (DEGs) in contrasting wheat genotypes under heat stress conditions revealed that significant DEGs in tolerant and susceptible genotypes could unequivocally differentiate tolerant and susceptible wheat genotypes. This study provides useful information on TaAP2/ERF superfamily genes and reveals candidate genes in response to heat stress, which forms a foundation for heat tolerance breeding in wheat.
Collapse
|
7
|
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M, Gupta S, Jatwa TK, Kumar R, Yadav AK, Prasad PVV. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int J Mol Sci 2022; 23:2838. [PMID: 35269980 PMCID: PMC8911405 DOI: 10.3390/ijms23052838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Collapse
Affiliation(s)
- Malu Ram Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Mukesh Choudhary
- School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia;
| | - Jogendra Singh
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla 171001, India;
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
| | - Pushpika Udawat
- Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur 313001, India;
| | - Narendra Kumar Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Nitin Kumar Garg
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Chirag Maheshwari
- Division of Biochemistry, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Muzaffar Hasan
- Division of Agro Produce Processing, Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sunita Gupta
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Tarun Kumar Jatwa
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - Rakesh Kumar
- Division of Agronomy, Indian Council of Agricultural Research, National Dairy Research Institute, Karnal 132001, India;
| | - Arvind Kumar Yadav
- Division of Agronomy, Rajasthan Agricultural Research Institute, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, India; (M.R.Y.); (J.S.); (N.K.G.); (N.K.G.); (S.G.); (T.K.J.); (A.K.Y.)
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS 66506, USA;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
9
|
Vitoriano CB, Calixto CPG. Reading between the Lines: RNA-seq Data Mining Reveals the Alternative Message of the Rice Leaf Transcriptome in Response to Heat Stress. PLANTS 2021; 10:plants10081647. [PMID: 34451692 PMCID: PMC8400768 DOI: 10.3390/plants10081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Rice (Oryza sativa L.) is a major food crop but heat stress affects its yield and grain quality. To identify mechanistic solutions to improve rice yield under rising temperatures, molecular responses of thermotolerance must be understood. Transcriptional and post-transcriptional controls are involved in a wide range of plant environmental responses. Alternative splicing (AS), in particular, is a widespread mechanism impacting the stress defence in plants but it has been completely overlooked in rice genome-wide heat stress studies. In this context, we carried out a robust data mining of publicly available RNA-seq datasets to investigate the extension of heat-induced AS in rice leaves. For this, datasets of interest were subjected to filtering and quality control, followed by accurate transcript-specific quantifications. Powerful differential gene expression (DE) and differential AS (DAS) identified 17,143 and 2162 heat response genes, respectively, many of which are novel. Detailed analysis of DAS genes coding for key regulators of gene expression suggests that AS helps shape transcriptome and proteome diversity in response to heat. The knowledge resulting from this study confirmed a widespread transcriptional and post-transcriptional response to heat stress in plants, and it provided novel candidates for rapidly advancing rice breeding in response to climate change.
Collapse
|
10
|
Raza A, Tabassum J, Kudapa H, Varshney RK. Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 2021; 41:1209-1232. [PMID: 33827346 DOI: 10.1080/07388551.2021.1898332] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants are extensively well-thought-out as the main source for nourishing natural life on earth. In the natural environment, plants have to face several stresses, mainly heat stress (HS), chilling stress (CS) and freezing stress (FS) due to adverse climate fluctuations. These stresses are considered as a major threat for sustainable agriculture by hindering plant growth and development, causing damage, ultimately leading to yield losses worldwide and counteracting to achieve the goal of "zero hunger" proposed by the Food and Agricultural Organization (FAO) of the United Nations. Notably, this is primarily because of the numerous inequities happening at the cellular, molecular and/or physiological levels, especially during plant developmental stages under temperature stress. Plants counter to temperature stress via a complex phenomenon including variations at different developmental stages that comprise modifications in physiological and biochemical processes, gene expression and differences in the levels of metabolites and proteins. During the last decade, omics approaches have revolutionized how plant biologists explore stress-responsive mechanisms and pathways, driven by current scientific developments. However, investigations are still required to explore numerous features of temperature stress responses in plants to create a complete idea in the arena of stress signaling. Therefore, this review highlights the recent advances in the utilization of omics approaches to understand stress adaptation and tolerance mechanisms. Additionally, how to overcome persisting knowledge gaps. Shortly, the combination of integrated omics, genome editing, and speed breeding can revolutionize modern agricultural production to feed millions worldwide in order to accomplish the goal of "zero hunger."
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Hangzhou, China
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| |
Collapse
|
11
|
Qin-Di D, Gui-Hua J, Xiu-Neng W, Zun-Guang M, Qing-Yong P, Shiyun C, Yu-Jian M, Shuang-Xi Z, Yong-Xiang H, Yu L. High temperature-mediated disturbance of carbohydrate metabolism and gene expressional regulation in rice: a review. PLANT SIGNALING & BEHAVIOR 2021; 16:1862564. [PMID: 33470154 PMCID: PMC7889029 DOI: 10.1080/15592324.2020.1862564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Global warming has induced higher frequencies of excessively high-temperature weather episodes, which pose damage risk to rice growth and production. Past studies seldom specified how high temperature-induced carbohydrate metabolism disturbances from both source and sink affect rice fertilization and production. Here we discuss the mechanism of heat-triggered damage to rice quality and production through disturbance of carbohydrate generation and consumption under high temperatures. Furthermore, we provide strong evidence from past studies that rice varieties that maintain high photosynthesis and carbohydrate usage efficiencies under high temperatures will suffer less heat-induced damage during reproductive developmental stages. We also discuss the complexity of expressional regulation of rice genes in response to high temperatures, while highlighting the important roles of heat-inducible post-transcriptional regulations of gene expression. Lastly, we predict future directions in heat-tolerant rice breeding and also propose challenges that need to be conquered in the future.
Collapse
Affiliation(s)
- Deng Qin-Di
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Jian Gui-Hua
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Wang Xiu-Neng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Zun-Guang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Peng Qing-Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Chen Shiyun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Yu-Jian
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Zhou Shuang-Xi
- New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay,New Zealand
| | - Huang Yong-Xiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Ling Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| |
Collapse
|
12
|
Yang J, Fei K, Chen J, Wang Z, Zhang W, Zhang J. Jasmonates alleviate spikelet‐opening impairment caused by high temperature stress during anthesis of photo‐thermo‐sensitive genic male sterile rice lines. Food Energy Secur 2020. [DOI: 10.1002/fes3.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Keqi Fei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jing Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|