1
|
Wojtera B, Ostrowska K, Szewczyk M, Masternak MM, Golusiński W. Chloride intracellular channels in oncology as potential novel biomarkers and personalized therapy targets: a systematic review. Rep Pract Oncol Radiother 2024; 29:258-270. [PMID: 39143969 PMCID: PMC11321771 DOI: 10.5603/rpor.99674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background The chloride intracellular channels (CLICs) family includes six ion channels (CLIC1-CLIC6) expressed on the cellular level and secreted into interstitial fluid and blood. They are involved in the physiological functioning of multiple systems as well as the pathogenetic processes of cancer. CLICs play essential roles in the tumor microenvironment. The current systematic review aimed at identifying and summarizing the research of CLICs in oncology on clinical material to assess CLICs' potential as novel biomarkers and personalized therapy targets. Materials and methods The authors systematically searched the PubMed database for original articles concerning CLIC research on clinical material of all types of cancer - fluids and tissues. Results Fifty-three articles investigating in summary 3944 clinical samples were qualified for the current review. Studied material included 3438 tumor samples (87%), 437 blood samples (11%), and 69 interstitial fluid samples (2%). Studies investigated 21 cancer types, mostly hepatocellular carcinoma, colorectal, ovarian, and gastric cancer. Importantly, CLIC1, CLIC2, CLIC3, CLIC4, and CLIC5 were differently expressed in cancerous tissues and patients' blood compared to healthy controls. Moreover, CLICs were found to be involved in several cancer-associated signaling pathways, such as PI3K/AKT, MAPK/ERK, and MAPK/p38. Conclusion CLIC family members may be candidates for potential novel cancer biomarkers due to the contrast in their expression between cancerous and healthy tissues and secretion to the interstitial fluid and blood. CLICs are investigated as potential therapeutic targets because of their involvement in cancer pathogenesis and tumor microenvironment.
Collapse
Affiliation(s)
- Bartosz Wojtera
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamila Ostrowska
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał M. Masternak
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Chen M, Gao Y, Cao H, Wang Z, Zhang S. Comprehensive analysis reveals dual biological function roles of EpCAM in kidney renal clear cell carcinoma. Heliyon 2024; 10:e23505. [PMID: 38187284 PMCID: PMC10767389 DOI: 10.1016/j.heliyon.2023.e23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background Epithelial cell adhesion molecule (EpCAM), a well-established marker for circulating tumor cells, plays a crucial role in the complex process of cancer metastasis. The primary objective of this investigation is to study EpCAM expression in pan-cancer and elucidate its significance in the context of kidney renal clear cell carcinoma (KIRC). Methods Data obtained from the public database was harnessed for the comprehensive assessment of the EpCAM expression levels and prognostic and clinicopathological correlations in thirty-three types of cancer. EpCAM was validated in our own KIRC sequencing and immunohistochemical cohorts. Subsequently, an in-depth exploration was conducted to scrutinize the interrelationship between EpCAM and various facets, including immune cells, immune checkpoints, and chemotherapy drugs. We employed Cox regression analysis to identify prognostic immunomodulators associated with EpCAM, which were subsequently utilized in the development of a prognostic model. The model was validated in our own clinical cohort and public datasets, and compared with 137 published models. The role of EpCAM in KIRC was explored by biological function experiments in vitro. Results While EpCAM exhibited pronounced overexpression across a wide spectrum of cancer types, a notable reduction was observed in KIRC tissues. As grade increased, EpCAM expression decreased. EpCAM expression decreased in patients without metastasis. EpCAM mRNA and protein levels were used as independent, favorable prognostic factors in patients with KIRC in our own cohort. The expression of EpCAM exhibited strong associations with immune-related pathways, demonstrating an inverse correlation with the majority of immune cell types. Immune checkpoint inhibitors exert better therapeutic effects on patients with low EpCAM expression. In addition, EpCAM can be used as a drug resistance indicator and guide the clinical medication of patients with KIRC. A robust model, which had good predictive accuracy and applicability, showed significant superiority over other models. Importantly, EpCAM played the dual roles of promoting proliferation and resisting metastasis in KIRC. Conclusion In the context of KIRC, EpCAM assumes a surprising dual role, where it not only facilitates cell proliferation but also exerts resistance against the metastatic process. EpCAM serves as a standalone prognostic marker for patients with KIRC, and related models can also effectively predict prognosis. These discoveries offer novel perspectives on the functional significance of EpCAM in the context of KIRC.
Collapse
Affiliation(s)
- Mei Chen
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Yuanhui Gao
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Hui Cao
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Zhenting Wang
- Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Shufang Zhang
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| |
Collapse
|
3
|
Shuai Y, Zhang H, Liu C, Wang J, Jiang Y, Sun J, Gao X, Bo X, Xiao X, Liao X, Huang C, Chen H, Jiang G. CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine modification of p21 mRNA and promote bladder cancer progression. Cell Death Dis 2024; 15:9. [PMID: 38182571 PMCID: PMC10770081 DOI: 10.1038/s41419-023-06373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Chromatin accessibility plays important roles in revealing the regulatory networks of gene expression, while its application in bladder cancer is yet to be fully elucidated. Chloride intracellular channel 3 (CLIC3) protein has been reported to be associated with the progression of some tumors, whereas the specific mechanism of CLIC3 in tumor remains unclear. Here, we screened for key genes in bladder cancer through the identification of transcription factor binding site clustered region (TFCR) on the basis of chromatin accessibility and TF motif. CLIC3 was identified by joint profiling of chromatin accessibility data with TCGA database. Clinically, CLIC3 expression was significantly elevated in bladder cancer and was negatively correlated with patient survival. CLIC3 promoted the proliferation of bladder cancer cells by reducing p21 expression in vitro and in vivo. Mechanistically, CLIC3 interacted with NAT10 and inhibited the function of NAT10, resulting in the downregulation of ac4C modification and stability of p21 mRNA. Overall, these findings uncover an novel mechanism of mRNA ac4C modification and CLIC3 may act as a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Junting Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yangkai Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xincheng Gao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xingyuan Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin Liao
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Xin S, Li R, Su J, Cao Q, Wang H, Wei Z, Li G, Qin W, Zhang Z, Wang C, Zhang C, Zhang J. A novel model based on disulfidptosis-related genes to predict prognosis and therapy of bladder urothelial carcinoma. J Cancer Res Clin Oncol 2023; 149:13925-13942. [PMID: 37541976 DOI: 10.1007/s00432-023-05235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Disulfidptosis is a novel type of cell death induced by disulphide stress that depends on the accumulation of cystine disulphide, causing cytotoxicity and triggering cell death. However, the direct prognostic effect and regulatory mechanism of disulfidptosis-related genes in bladder urothelial carcinoma (BLCA) remain unclear. METHODS To explore the role of 10 disulfidptosis-related genes, the multiomic data of 10 genes were comprehensively analysed. Next, based on seven disulfidptosis-related differentially expressed genes, a novel disulfidptosis-related gene score was developed to help predict the prognosis of BLCA. Immunohistochemistry, EDU, Real-time PCR and western blot were used to verify the model. RESULTS Significant functional differences were found between the high- and low-risk score groups, and samples with a higher risk score were more malignant. Furthermore, the tumour exclusion and Tumour Immune Dysfunction and Exclusion scores of the high-risk score group were higher than those of the low-risk score group. The risk score was positively correlated with the expression of immune checkpoints. Drug sensitivity analyses revealed that the low-risk score group had a higher sensitivity to cisplatin, doxorubicin, docetaxel and gemcitabine than the high-risk score group. Moreover, the expression of the TM4SF1 was positively correlated with the malignancy degree of BLCA, and the proliferation ability of BLCA cells was reduced after knockdown TM4SF1. CONCLUSION The present study results suggest that disulfidptosis-related genes influence the prognosis of BLCA through their involvement in immune cell infiltration. Thus, these findings indicate the role of disulfidptosis in BLCA and its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China.
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Luoyang Central Hospital, Zhengzhou University, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Guanyu Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Wang Qin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Zheng Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 465300, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| | - Jianguo Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Road, Luo-Long District, Luoyang, 471000, China
| |
Collapse
|
5
|
Zhu X, Wang CL, Yu JF, Weng J, Han B, Liu Y, Tang X, Pan B. Identification of immune-related biomarkers in peripheral blood of schizophrenia using bioinformatic methods and machine learning algorithms. Front Cell Neurosci 2023; 17:1256184. [PMID: 37841288 PMCID: PMC10568181 DOI: 10.3389/fncel.2023.1256184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Schizophrenia is a group of severe neurodevelopmental disorders. Identification of peripheral diagnostic biomarkers is an effective approach to improving diagnosis of schizophrenia. In this study, four datasets of schizophrenia patients' blood or serum samples were downloaded from the GEO database and merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WCGNA). The WGCNA analysis showed that the cyan module, among 9 modules, was significantly related to schizophrenia, which subsequently yielded 317 schizophrenia-related key genes by comparing with the DEGs. The enrichment analyses on these key genes indicated a strong correlation with immune-related processes. The CIBERSORT algorithm was adopted to analyze immune cell infiltration, which revealed differences in eosinophils, M0 macrophages, resting mast cells, and gamma delta T cells. Furthermore, by comparing with the immune genes obtained from online databases, 95 immune-related key genes for schizophrenia were screened out. Moreover, machine learning algorithms including Random Forest, LASSO, and SVM-RFE were used to further screen immune-related hub genes of schizophrenia. Finally, CLIC3 was found as an immune-related hub gene of schizophrenia by the three machine learning algorithms. A schizophrenia rat model was established to validate CLIC3 expression and found that CLIC3 levels were reduced in the model rat plasma and brains in a brain-regional dependent manner, but can be reversed by an antipsychotic drug risperidone. In conclusion, using various bioinformatic and biological methods, this study found an immune-related hub gene of schizophrenia - CLIC3 that might be a potential diagnostic biomarker and therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | | | - Jian-feng Yu
- Tongzhou District Hospital of TCM, Nantong, China
| | - Jianjun Weng
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University Medical College, Yangzhou, China
| | - Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, China
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
6
|
Xiao Y, Xu D, Jiang C, Huili Y, Nie S, Zhu H, Fan G, Guan X. Telomere maintenance-related genes are important for survival prediction and subtype identification in bladder cancer. Front Genet 2023; 13:1087246. [PMID: 36685927 PMCID: PMC9853053 DOI: 10.3389/fgene.2022.1087246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Bladder cancer ranks among the top three in the urology field for both morbidity and mortality. Telomere maintenance-related genes are closely related to the development and progression of bladder cancer, and approximately 60%-80% of mutated telomere maintenance genes can usually be found in patients with bladder cancer. Methods: Telomere maintenance-related gene expression profiles were obtained through limma R packages. Of the 359 differential genes screened, 17 prognostically relevant ones were obtained by univariate independent prognostic analysis, and then analysed by LASSO regression. The best result was selected to output the model formula, and 11 model-related genes were obtained. The TCGA cohort was used as the internal group and the GEO dataset as the external group, to externally validate the model. Then, the HPA database was used to query the immunohistochemistry of the 11 model genes. Integrating model scoring with clinical information, we drew a nomogram. Concomitantly, we conducted an in-depth analysis of the immune profile and drug sensitivity of the bladder cancer. Referring to the matrix heatmap, delta area plot, consistency cumulative distribution function plot, and tracking plot, we further divided the sample into two subtypes and delved into both. Results: Using bioinformatics, we obtained a prognostic model of telomere maintenance-related genes. Through verification with the internal and the external groups, we believe that the model can steadily predict the survival of patients with bladder cancer. Through the HPA database, we found that three genes, namely ABCC9, AHNAK, and DIP2C, had low expression in patients with tumours, and eight other genes-PLOD1, SLC3A2, RUNX2, RAD9A, CHMP4C, DARS2, CLIC3, and POU5F1-were highly expressed in patients with tumours. The model had accurate predictive power for populations with different clinicopathological features. Through the nomogram, we could easily assess the survival rate of patients. Clinicians can formulate targeted diagnosis and treatment plans for patients based on the prediction results of patient survival, immunoassays, and drug susceptibility analysis. Different subtypes help to further subdivide patients for better treatment purposes. Conclusion: According to the results obtained by the nomogram in this study, combined with the results of patient immune-analysis and drug susceptibility analysis, clinicians can formulate diagnosis and personalized treatment plans for patients. Different subtypes can be used to further subdivide the patient for a more precise treatment plan.
Collapse
Affiliation(s)
- Yonggui Xiao
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Danping Xu
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chonghao Jiang
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Youlong Huili
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Shiwen Nie
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Hongfei Zhu
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Guorui Fan
- Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | | |
Collapse
|
7
|
Chen M, Nie Z, Gao Y, Cao H, Zheng L, Guo N, Peng Y, Zhang S. m7G regulator-mediated molecular subtypes and tumor microenvironment in kidney renal clear cell carcinoma. Front Pharmacol 2022; 13:900006. [PMID: 36147333 PMCID: PMC9486008 DOI: 10.3389/fphar.2022.900006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: RNA methylation modification plays an important role in immune regulation. m7G RNA methylation is an emerging research hotspot in the RNA methylation field. However, its role in the tumor immune microenvironment of kidney renal clear cell carcinoma (KIRC) is still unclear. Methods: We analyzed the expression profiles of 29 m7G regulators in KIRC, integrated multiple datasets to identify a novel m7G regulator-mediated molecular subtype, and developed the m7G score. We evaluated the immune tumor microenvironments in m7G clusters and analyzed the correlation of the m7G score with immune cells and drug sensitivity. We tested the predictive power of the m7G score for prognosis of patients with KIRC and verified the predictive accuracy of the m7G score by using the GSE40912 and E-MTAB-1980 datasets. The genes used to develop the m7G score were verified by qRT-PCR. Finally, we experimentally analyzed the effects of WDR4 knockdown on KIRC proliferation, migration, invasion, and drug sensitivity. Results: We identified three m7G clusters. The expression of m7G regulators was higher in cluster C than in other clusters. m7G cluster C was related to immune activation, low tumor purity, good prognosis, and low m7G score. Cluster B was related to drug metabolism, high tumor purity, poor survival, and high m7G score. Cluster A was related to purine metabolism. The m7G score can well-predict the prognosis of patients with KIRC, and its prediction accuracy based on the m7G score nomogram was very high. Patients with high m7G scores were more sensitive to rapamycin, gefitinib, sunitinib, and vinblastine than other patients. Knocking down WDR4 can inhibit the proliferation, migration, and invasion of 786-0 and Caki-1 cells and increase sensitivity to sorafenib and sunitinib. Conclusion: We proposed a novel molecular subtype related to m7G modification and revealed the immune cell infiltration characteristics of different subtypes. The developed m7G score can well-predict the prognosis of patients with KIRC, and our research provides a basis for personalized treatment of patients with KIRC.
Collapse
|
8
|
Zhang Q, Liu Y, Chen P, Shi X, Liu Y, Shi L, Cong P, Mao S, Tong C, Du C, Hou M. Solute carrier family 12 member 8 (SLC12A8) is a potential biomarker and related to tumor immune cell infiltration in bladder cancer. Bioengineered 2021; 12:4946-4961. [PMID: 34365894 PMCID: PMC8806707 DOI: 10.1080/21655979.2021.1962485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The solute carrier family has been reported to play critical roles in the progression of several cancers; however, the relationship between solute carrier family 12 member 8 (SLC12A8) and bladder cancer (BC) has not been clearly confirmed. This study explores the prognostic value of SLC12A8 for BC and its correlation with immune cell infiltration. We found that the expression of SLC12A8 mRNA was significantly overexpressed in BC tissues compared with noncancerous tissues in multiple public databases, and the result was validated using real-time PCR and immunohistochemistry (IHC). The Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of SLC12A8 for BC. The high expression of SLC12A8 led to a shorter overall survival time and was an unfavorable prognostic biomarker for BC. The mechanisms of SLC12A8 promoting tumorigenesis were investigated by Gene Set Enrichment Analysis (GSEA). Moreover, the correlations of SLC12A8 expression with the tumor-infiltrating immune cells (TICs) in BC were explored using TIMER 2.0 and CIBERSORT. SLC12A8 was associated with CD4+ T cells, dendritic cells, neutrophils, and macrophages infiltration. The expression of SLC12A8 was positively correlated with crucial immune checkpoint molecules. In conclusion, SLC12A8 might be an unfavorable prognostic biomarker in BC related to tumor immune cell infiltration.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R. China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Peng Chen
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning, P.R. China
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Peifang Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Cangci Tong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning, P.R. China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R. China
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, Liaoning, P.R. China
| |
Collapse
|
9
|
Derivation and Comprehensive Analysis of Aging Patterns in Patients with Bladder Cancer. DISEASE MARKERS 2021; 2021:3385058. [PMID: 34721733 PMCID: PMC8553474 DOI: 10.1155/2021/3385058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Background Aging is an essential risk factor for cancer. However, aging-related genes (ARGs) have not been comprehensively analyzed in bladder cancer (BC). Therefore, the study is aimed at derivating a risk stratification system for BC patients based on ARGs. Methods Public databases were used to acquire ARGs sets, transcriptome files, and clinical data. The “limma” package was then used to screen for differential ARGs while also using univariate Cox regression analysis to explore for prognostic ARGs. The “ConsensusClusterPlus” package was used to perform aging patterns in BC patients based on the above prognostic ARGs. Subsequently, aging patterns were investigated in survival prediction, mutation landscape, immunotherapy, immunological checkpoints, and immune microenvironment. We likewise utilized gene enrichment analysis to explore the biological functions that were behind the findings. To construct a risk signature and nonogram for prognostic prediction, we used LASSO and Cox regression analysis based on differential genes in aging patterns. In addition, we plotted a nomogram and validate the accuracy of the risk signature in GEO and TCGA cohorts. We explored the possible biological mechanism using GSEA analysis and preliminarily identified a hub gene using PPI network. Finally, we validated the expression of hub gene in BC cell lines. Results We screened 84 downregulated ARGs, 74 upregulated ARGs, and 32 prognostic ARGs in the human aging genome resource. The aging patterns based on prognostic genes had excellent survival prediction (p < 0.001) and discriminatory ability in 405 BC patients. In addition, we found no significant differences in aging patterns in mutation analysis, which were all characterized by TP53, TTN, and KMT2D mutations. It is worth noting that cluster B in the aging patterns has a better response to immunotherapy and a more active immune microenvironment (p < 0.05). In addition, gene enrichment analysis showed that aging patterns may be related to biological processes such as Staphylococcus aureus infection, phagosome, and cytokine-cytokine receptor interaction. Subsequently, we constructed a risk signature based on 16 differential genes from different aging patterns and had good survival prediction ability in both GEO and TCGA cohort. Specifically, survival analysis revealed a significantly shorter survival time in the high-risk group than in the low-risk group (TCGA and GEO, p < 0.001). In addition, AUC values in the ROC analysis predicted 1, 3, and 5 years in TCGA cohort that are 0.713, 0.714, and 0.738, respectively. AUC values predicted 1, 3, and 5 years in GEO cohort that are 0.606, 0.663, and 0.718, respectively. There is no doubt that risk score was an independent prognostic factor from results of multivariate Cox regression analysis in BC patients (p < 0.001). There were also significant differences in immune cell infiltration, immune checkpoint, and immune score between the two groups (p < 0.05), but it should not be ignored that the correlation with the HLA expression was weak. Finally, we identified and validated CLIC3 as a hub gene that may be involved in the Wnt signaling pathway, etc. Conclusion We provided robust evidences that aging patterns based on ARGs can guide targeted therapy and survival prediction in BC patients.
Collapse
|
10
|
Huang G, Wang C, Fu X. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Future Oncol 2021; 17:4481-4495. [PMID: 34374301 DOI: 10.2217/fon-2021-0659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: Individualized patient profiling is instrumental for personalized management in hepatocellular carcinoma (HCC). This study built a model based on bidirectional deep neural networks (BiDNNs), an unsupervised machine-learning approach, to integrate multi-omics data and predict survival in HCC. Methods: DNA methylation and mRNA expression data for HCC samples from the TCGA database were integrated using BiDNNs. With optimal clusters as labels, a support vector machine model was developed to predict survival. Results: Using the BiDNN-based model, samples were clustered into two survival subgroups. The survival subgroup classification was an independent prognostic factor. BiDNNs were superior to multimodal autoencoders. Conclusion: This study constructed and validated a BiDNN-based model for predicting prognosis in HCC, with implications for individualized therapies in HCC.
Collapse
Affiliation(s)
- Guojun Huang
- Department of Oncology, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Cheng Wang
- Department of General Surgery, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Xi Fu
- Department of Oncology, Pidu District People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Cianci F, Verduci I. Transmembrane Chloride Intracellular Channel 1 (tmCLIC1) as a Potential Biomarker for Personalized Medicine. J Pers Med 2021; 11:jpm11070635. [PMID: 34357102 PMCID: PMC8307889 DOI: 10.3390/jpm11070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of potential pathological biomarkers has proved to be essential for understanding complex and fatal diseases, such as cancer and neurodegenerative diseases. Ion channels are involved in the maintenance of cellular homeostasis. Moreover, loss of function and aberrant expression of ion channels and transporters have been linked to various cancers, and to neurodegeneration. The Chloride Intracellular Channel 1 (CLIC1), CLIC1 is a metamorphic protein belonging to a partially unexplored protein superfamily, the CLICs. In homeostatic conditions, CLIC1 protein is expressed in cells as a cytosolic monomer. In pathological states, CLIC1 is specifically expressed as transmembrane chloride channel. In the following review, we trace the involvement of CLIC1 protein functions in physiological and in pathological conditions and assess its functionally active isoform as a potential target for future therapeutic strategies.
Collapse
|