1
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
2
|
In Silico Identification of Cassava Genome-Encoded MicroRNAs with Predicted Potential for Targeting the ICMV-Kerala Begomoviral Pathogen of Cassava. Viruses 2023; 15:v15020486. [PMID: 36851701 PMCID: PMC9963618 DOI: 10.3390/v15020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cassava mosaic disease (CMD) is caused by several divergent species belonging to the genus Begomovirus (Geminiviridae) transmitted by the whitefly Bemisia tabaci cryptic species group. In India and other parts of Asia, the Indian cassava mosaic virus-Kerala (ICMV-Ker) is an emergent begomovirus of cassava causing damage that results in reduced yield loss and tuber quality. Double-stranded RNA-mediated interference (RNAi) is an evolutionary conserved mechanism in eukaryotes and highly effective, innate defense system to inhibit plant viral replication and/or translation. The objective of this study was to identify and characterize cassava genome-encoded microRNAs (mes-miRNA) that are predicted to target ICMV-Ker ssDNA-encoded mRNAs, based on four in silico algorithms: miRanda, RNA22, Tapirhybrid, and psRNA. The goal is to deploy the predicted miRNAs to trigger RNAi and develop cassava plants with resistance to ICMV-Ker. Experimentally validated mature cassava miRNA sequences (n = 175) were downloaded from the miRBase biological database and aligned with the ICMV-Ker genome. The miRNAs were evaluated for base-pairing with the cassava miRNA seed regions and to complementary binding sites within target viral mRNAs. Among the 175 locus-derived mes-miRNAs evaluated, one cassava miRNA homolog, mes-miR1446a, was identified to have a predicted miRNA target binding site, at position 2053 of the ICMV-Ker genome. To predict whether the cassava miRNA might bind predicted ICMV-Ker mRNA target(s) that could disrupt viral infection of cassava plants, a cassava locus-derived miRNA-mRNA regulatory network was constructed using Circos software. The in silico-predicted cassava locus-derived mes-miRNA-mRNA network corroborated interactions between cassava mature miRNAs and the ICMV-Ker genome that warrant in vivo analysis, which could lead to the development of ICMV-Ker resistant cassava plants.
Collapse
|
3
|
Gong Q, Wang Y, Jin Z, Hong Y, Liu Y. Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. STRESS BIOLOGY 2022; 2:33. [PMID: 37676459 PMCID: PMC10441928 DOI: 10.1007/s44154-022-00057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Zhenhui Jin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
4
|
Hassan M, Iqbal MS, Naqvi S, Alashwal H, Moustafa AA, Kloczkowski A. Prediction of Site Directed miRNAs as Key Players of Transcriptional Regulators Against Influenza C Virus Infection Through Computational Approaches. Front Mol Biosci 2022; 9:866072. [PMID: 35463952 PMCID: PMC9023806 DOI: 10.3389/fmolb.2022.866072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and immunity against viral infections. In this study, we have used the computational tools, RNA22, RNAhybrid, and miRanda, to predict the microRNA-mRNA binding sites to find the putative microRNAs playing role in the host response to influenza C virus infection. This computational research screened the following four miRNAs: hsa-mir-3155a, hsa-mir-6796-5p, hsa-mir-3194-3p and hsa-mir-4673, which were further investigated for binding site prediction to the influenza C genome. Moreover, multiple sites in protein-coding region (HEF, CM2, M1-M2, NP, NS1- NS2, NSF, P3, PB1 and PB2) were predicted by RNA22, RNAhybrid and miRanda. Furthermore, 3D structures of all miRNAs and HEF were predicted and checked for their binding potential through molecular docking analysis. The comparative results showed that among all proteins, HEF is higher in prevalence throughout the analysis as a potential (human-derived) microRNAs target. The target-site conservation results showed that core nucleotide sequence in three different strains is responsible for potential miRNA binding to different viral strains. Further steps to use these microRNAs may lead to new therapeutic insights on fighting influenza virus infection.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH, United States
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| | - Muhammad Shahzad Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sawaira Naqvi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| | - Ahmed A. Moustafa
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD, Australia
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Mubashir Hassan, ; Hany Alashwal, ; Andrzej Kloczkowski,
| |
Collapse
|
5
|
Ashraf MA, Feng X, Hu X, Ashraf F, Shen L, Iqbal MS, Zhang S. In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus. PLoS One 2022; 17:e0261807. [PMID: 35051194 PMCID: PMC8775236 DOI: 10.1371/journal.pone.0261807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Sugarcane bacilliform virus (SCBV) is considered one of the most economically damaging pathogens for sugarcane production worldwide. Three open reading frames (ORFs) are characterized in the circular, ds-DNA genome of the SCBV; these encode for a hypothetical protein (ORF1), a DNA binding protein (ORF2), and a polyprotein (ORF3). A comprehensive evaluation of sugarcane (Saccharum officinarum L.) miRNAs for the silencing of the SCBV genome using in silico algorithms were carried out in the present study using mature sugarcane miRNAs. miRNAs of sugarcane are retrieved from the miRBase database and assessed in terms of hybridization with the SCBV genome. A total of 14 potential candidate miRNAs from sugarcane were screened out by all used algorithms used for the silencing of SCBV. The consensus of three algorithms predicted the hybridization site of sof-miR159e at common locus 5534. miRNA-mRNA interactions were estimated by computing the free-energy of the miRNA-mRNA duplex using the RNAcofold algorithm. A regulatory network of predicted candidate miRNAs of sugarcane with SCBV-ORFs, generated using Circos-is used to identify novel targets. The predicted data provide useful information for the development of SCBV-resistant sugarcane plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- * E-mail: (MAA); (SZ)
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaowen Hu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Fakiha Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linbo Shen
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shuzhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- * E-mail: (MAA); (SZ)
| |
Collapse
|
6
|
The role of miRNA in plant-virus interaction: a review. Mol Biol Rep 2021; 48:2853-2861. [PMID: 33772417 DOI: 10.1007/s11033-021-06290-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Plant viruses affect crop production both quantitatively and qualitatively. The viral genome consists of either DNA or RNA. However, most plant viruses are positive single-strand RNA viruses. MicroRNAs are involved in gene regulation and affect development as well as host-virus interaction. They are non-coding short with 20-24 nucleotides long capable of regulating gene expression. The miRNA gene is transcribed by RNA polymerase II to form pri-miRNA which will later cleaved by Dicer-like 1 to produce pre-miRNA with the help of HYPONASTIC LEAVES1 and SERRATE which finally methylated and exported via nucleopore with the help of HASTY. The outcome of plant virus interaction depends on the effectiveness of host defense and the ability of a virus counter-defense mechanism. In plants, miRNAs are involved in the repression of gene expression through transcript cleavage. On the other hand, viruses use viral suppressors of RNA silencing (VSRs) which affect RISC assembly and subsequent mRNA degradation. Passenger strands, miRNA*, have a significant biological function in plant defense response as well as plant development.
Collapse
|
7
|
Ashraf MA, Ashraf F, Feng X, Hu X, Shen L, Khan J, Zhang S. Potential targets for evaluation of sugarcane yellow leaf virus resistance in sugarcane cultivars: in silico sugarcane miRNA and target network prediction. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fakiha Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xiaowen Hu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, PR China
| | - Linbo Shen
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shuzhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| |
Collapse
|