1
|
Xiao Y, Ma J, Chen R, Xiang S, Yang B, Chen L, Fang J, Liu S. Two microbes assisting Miscanthus floridulus in remediating multi-metal(loid)s-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28922-28938. [PMID: 38565816 DOI: 10.1007/s11356-024-33032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Miscanthus has good tolerance to multi-metal(loid)s and has received increasing attention in remediated studies of metal(loid)s-contaminated soil. In this study, we conducted phytoextraction techniques to investigate the synergic effects of remediation of multi-metal(loid)s-contaminated soil by Miscanthus floridulus (Lab.) and two plant growth-promoting bacteria (PGPB), TS8 and MR2, affiliated to Enterobacteriaceae. The results exhibited a decrease of arsenic (15.27-21.50%), cadmium (8.64-15.52%), plumbum (5.92-12.76%), and zinc (12.84-24.20%) except for copper contents in the soil in bacterial inoculation groups, indicating that MR2 and TS8 could enhance the remediation of metal(loid)s. Moreover, increased fresh/dry weight and height indicated that inoculated bacteria could promote Miscanthus growth. Although the activities of antioxidant enzymes and the content of chlorophyll in the overground tissues showed no significant increase or even decrease, the activities of antioxidant enzymes in the underground tissues and soil were elevated by 48.95-354.17%, available P by 19.07-23.02%, and available K by 15.34-17.79% (p < 0.05). Bacterial inoculants could also decrease the soil pH. High-throughput sequencing analysis showed that the bacterial inoculant affected the rhizosphere bacterial community and reduced community diversity, but the relative abundance of some PGPB was found to increase. Phylogenetic molecular ecological networks indicated that bacterial inoculants reduced interactions between rhizosphere bacteria and thereby led to a simpler network structure but increased the proportion of positive-correlation links and enhanced the metabiosis and symbiosis of those bacteria. Spearman's test showed that OTUs affiliated with Enterobacteriaceae and soil nutrients were critical for metal(loid) remediation and Miscanthus growth. The results of this study provide a basis for the synergic remediation of multi-metal(loid)s-contaminated soils by Miscanthus and PGPB and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by the other PGPB or critical bacteria.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuming Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China.
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, Yili Normal University, Yining, 835000, China.
| |
Collapse
|
2
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
3
|
Meng L, Yang Y, Ma Z, Jiang J, Zhang X, Chen Z, Cui G, Yin X. Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129128. [PMID: 35594664 DOI: 10.1016/j.jhazmat.2022.129128] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) interferes with plant gene expression, alters metabolite contents and affects plant growth. However, the molecular mechanism underlying the plant response to Pb is not completely understood. In the present study, Trifolium pratense L. was exposed to Pb concentrations of 0 (Pb0), 500 (Pb500), 1000 (Pb1000), 2000 (Pb2000) and 3000 (Pb3000) mg/kg in soils. Pb stress affected the ability of T. pratense to accumulate and transport Pb, increased the activity of peroxidase (POD) and the contents of malondialdehyde (MDA) and proline, decreased the amount of photosynthetic pigments and soluble proteins, and led to changes in growth and biomass. Transcriptomic and metabolomic analyses showed that Pb mainly affected eight pathways, and LHC, flavonoids, organic acids, amino acids and carbohydrates were upregulated or downregulated. Moreover, Pb500 induced the upregulation of serA, promoted the synthesis of citric acid, maintained photosynthetic pigment levels, and ultimately promoted an increase in stem length. Pb3000 induced the upregulation of ARF, GH3 and SAUR genes, but the saccharide contents and stem length decreased in response to Pb stress. We used a variety of methods to provide a molecular perspective on the mechanism underlying the response of T. pratense to Pb stress.
Collapse
Affiliation(s)
- Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yupeng Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewang Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zirui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
An X, Chen J, Liu T, Li W, Luo X, Zou L. Transcriptomic and Metabolic Profiling of Kenaf Stems under Salinity Stress. PLANTS 2022; 11:plants11111448. [PMID: 35684221 PMCID: PMC9182824 DOI: 10.3390/plants11111448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Kenaf (Hibiscus cannabinus L.) is an indispensable fiber crop that faces increasing salinity stress. In previous studies regarding the molecular mechanisms of how kenaf may respond to salt stress, no metabolic evidences have been reported. Meanwhile, studies regarding kenaf stems under adverse growth conditions have not been conducted. In the present study, multiple-layer evidences including physiological, transcriptomic, and metabolic data regarding how kenaf stems were affected by the salt stress are provided, wherein the stem growth, especially the lignification process, is retarded. Meanwhile, the transcriptomic data indicated genes involved in the photosynthesis are significantly repressed while the multiple flavonoid metabolism genes are enriched. As to the metabolic data, the content variation for the growth-promotion phytohormones such as IAA and the stress-responding ones including ABA are within or without expectations, implying these phytohormones played complicated roles when the kenaf stems encounter salt stress. However, the metabolite variations did not always agree with the expression levels of corresponding key pathway genes, possibly because the metabolite could be biosynthesized or catabolized in multiple pathways. Collectively, our data may enlighten, more specifically, downstream studies on kenaf responses against salinity and other adverse conditions.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (T.L.); (W.L.); (X.L.); (L.Z.)
- Correspondence: ; Tel./Fax: +86–571-82724635
| | - Jie Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Tingting Liu
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (T.L.); (W.L.); (X.L.); (L.Z.)
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (T.L.); (W.L.); (X.L.); (L.Z.)
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (T.L.); (W.L.); (X.L.); (L.Z.)
| | - Lina Zou
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China; (T.L.); (W.L.); (X.L.); (L.Z.)
| |
Collapse
|
5
|
An X, Luo X, Liu T, Li W, Zou L. Development and Application of Fruit Color-Related Expressed Sequence Tag-Simple Sequence Repeat Markers in Abelmoschus esculentus on the Basis of Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:907895. [PMID: 35677229 PMCID: PMC9168766 DOI: 10.3389/fpls.2022.907895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Abelmoschus esculentus is a medicinal and edible plant that contains large amounts of active ingredients, including anthocyanins, polysaccharides, flavonoids, and terpenoids. However, because of a relative lack of molecular research, there are few molecular markers applicable for this plant species. In this study, on the basis of A. esculentus fruit color-related transcriptome sequencing data, we analyzed the patterns of simple sequence repeats (SSRs) in differentially expressed genes (DEGs) and revealed the biological processes and metabolic pathways associated with the related genes. We also designed primers for SSR loci to develop SSR molecular markers. Primers were synthesized using a DEG associated with a protein-protein interaction network. Polymorphic SSR markers were screened for the subsequent examination of A. esculentus germplasm resources and fruit color association analysis. The results indicated that 24.98% of the unigenes contained SSR motifs. Single-base (mononucleotide) repeats were the main SSRs, followed by trinucleotide and dinucleotide repeats. We selected 47 expressed sequence tag (EST)-SSR primer pairs for the genotyping of 153 A. esculentus varieties/lines. We ultimately obtained 21 EST-SSR markers suitable for genotyping. A generalized linear model-based association analysis detected two EST-SSR markers significantly associated with A. esculentus fruit color. In conclusion, several EST-SSR and SSR molecular markers in A. esculentus were developed in this study. The fruit color-associated markers may be useful for the molecular marker-assisted breeding of new A. esculentus varieties.
Collapse
|
6
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|