1
|
Mohamad EA, Ahmed SM, Masoud MA, Mohamed FA, Mohammed HS. Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. Curr Pharm Biotechnol 2025; 26:289-301. [PMID: 38918977 DOI: 10.2174/0113892010303097240605105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD The current study is intended to explore the cardioprotective effect of ethanolic Moringa Oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samya Mahmoud Ahmed
- Biochemistry Departement, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Fatma Adel Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
3
|
Szponar J, Niziński P, Dudka J, Kasprzak-Drozd K, Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells 2024; 13:1151. [PMID: 38995002 PMCID: PMC11240786 DOI: 10.3390/cells13131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.
Collapse
Affiliation(s)
- Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital, Medical University of Lublin, 20-718 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
5
|
Wang L, Ma J, Chen C, Lin B, Xie S, Yang W, Qian J, Zhang Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front Pharmacol 2024; 15:1315001. [PMID: 38562460 PMCID: PMC10982373 DOI: 10.3389/fphar.2024.1315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| | - Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Qian
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| |
Collapse
|
6
|
Shi H, Duan L, Tong L, Pu P, Wei L, Wang L, Hu D, Tang H. Research Progress on Flavonoids in Traditional Chinese Medicine to Counteract Cardiotoxicity Associated with Anti-Tumor Drugs. Rev Cardiovasc Med 2024; 25:74. [PMID: 39076949 PMCID: PMC11263839 DOI: 10.31083/j.rcm2503074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
The development of anti-tumor drugs has notably enhanced the survival rates and quality of life for patients with malignant tumors. However, the side effects of these drugs, especially cardiotoxicity, significantly limit their clinical application. The cardiotoxicity associated with anti-tumor drugs has been a subject of extensive attention and research. Traditional to mitigate these side effects have included reducing drug dosages, shortening treatment duration, modifying administration methods, and opting for drugs with lower toxicity. However, either approach may potentially compromise the anti-tumor efficacy of the medications. Therefore, exploring other effective methods for anti-cardiotoxicity will be the focus of future research. The potential of traditional Chinese medicine (TCM) in managing cardiovascular diseases and cancer treatment has gained widespread recognition. TCM is valued for its minimal side effects, affordability, and accessibility, offering promising avenues in the prevention and treatment of cardiotoxicity caused by anti-tumor drugs. Among its constituents, flavonoids, which are present in many TCMs, are particularly notable. These monomeric compounds with distinct structural components have been shown to possess both cardiovascular protective properties and anti-tumor capabilities. In this discussion, we will delve into the classification of anti-tumor drugs and explore the underlying mechanisms of their associated cardiotoxicity. Additionally, we will examine flavonoids found in TCM and investigate their mechanisms of cardiovascular protection. This will include an analysis of how these natural compounds can mitigate the cardiac side effects of anti-tumor therapies while potentially enhancing overall patient health and treatment outcomes.
Collapse
Affiliation(s)
- Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
- Department of Oncology, Renmin Hospital of Wuhan University, 430064 Wuhan, Hubei, China
| | - Lian Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Li Tong
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lai Wei
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Desheng Hu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
7
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Dai Q, Pan Y, Zhu X, Chen M, Xie L, Zhu Y, Wan G. Network Pharmacology along with Molecular Docking to Explore the Mechanism of Danshen Injection against Anthracycline-induced Cardiotoxicity and Transcriptome Validation. Curr Pharm Des 2024; 30:952-967. [PMID: 38482629 DOI: 10.2174/0113816128289845240305070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Although anthracyclines have demonstrated efficacy in cancer therapy, their utilization is constrained by cardiotoxicity. In contrast, Danshen injection (DSI), derived from Salvia miltiorrhiza, has a longstanding tradition of being employed to ameliorate cardiovascular ailments, including anthracycline- induced cardiotoxicity (AIC). Nonetheless, there is a notable dearth of comprehensive systematic investigation into the molecular mechanisms underlying DSI's effects on AIC. Consequently, this study was undertaken to explore the underlying mechanism by which DSI acted against AIC. METHODS Employing network pharmacology approach, the current investigation undertook a comprehensive analysis of the impact of DSI on AIC, which was further validated by transcriptome sequencing with in vitro AIC model. Additionally, molecular docking was conducted to evaluate the binding of active ingredients to core targets. A total of 3,404 AIC-related targets and 12 active ingredients in DSI, including chrysophanol, luteolin, tanshinone IIA, isoimperatorin, among others, were collected by differentially expressed analysis and database search, respectively. RESULTS The network pharmacology and enrichment analysis suggested 102 potential targets and 29 signaling pathways associated with the protective effect of DSI on AIC. Three core targets (CA12, NOS3, and POLH) and calcium signaling pathways were further validated by transcriptomic analysis of the in-vitro model. The high affinity of the active ingredients binding to corresponding targets was confirmed by molecular docking. CONCLUSION The present study suggested that DSI might exert a cardioprotective effect on AIC via the inhibition of CA12, NOS3, and POLH, as well as the modulation of calcium signaling. Further experiments are warranted to verify the findings.
Collapse
Affiliation(s)
- Quankai Dai
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xiwen Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mengyao Chen
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lin Xie
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yu Zhu
- Department of Research and Teaching, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
9
|
El Gizawy HA, Boshra SA. Pachira macrocarpa Schltdl. & Cham., HPLC Profile, and Neuroprotective Potential via Regulation of JNK, miRNA132, and miRNA-125b. ACS OMEGA 2023; 8:27238-27246. [PMID: 37546684 PMCID: PMC10398696 DOI: 10.1021/acsomega.3c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
In this study, we investigated the polyphenolic profile of Pachira macrocarpa Schltdl. & Cham. by HPLC analysis and we also isolated three compounds from the ethyl acetate leaf extract, which were identified by different spectral data as vitexin 1, luteolin 2, and ferulic acid 3. Moreover, we investigated the three isolated compounds and the plant extract for their therapeutic potential against AlCl3 exposure-induced neurotoxicity in rats. This investigation aims to determine whether vitexin, luteolin, and ferulic acid in Pachira macrocarpa Schltdl. & Cham. extract (P. macrocarpa) have the ability to treat AlCl3-induced brain toxicity in rats. Six groups of rats were created: group 1 (normal group), group 2 treated with AlCl3, and groups 3, 4, 5, and 6 treated with AlCl3 with vitexin, luteolin, ferulic acid, and P. macrocarpa extract, respectively, for 28 days. Neurotoxicity was assessed by measuring plasma IL-8 and IL-33 as well as brain superoxide dismutase (SOD), glutathione reductase (GSR), B-cell lymphoma-2 (BcL-2), B-cell lymphoma-2 associated-x (Bax), and neurogranin using the ELISA technique and c-Jun N-terminal kinase (JNK), miRNA-125b, and miRNA-132 levels using western blot and PCR. HPLC analysis identified major phenolics and flavonoids. Among the phenolics identified, chlorogenic acid was prevalent (2159.14 μg/g), and regarding flavonoids, rutin was prevalent (204.69 μg/g). A significant elevation of IL-8 and IL-33 as well as brain Bax, neurogranin, and JNK levels and of miRNA-125b gene expression levels was observed following AlCl3 exposure. However, significant depletion of SOD, GSR, BcL-2, total protein, and miRNA-132 gene expression was observed in AlCl3-treated rats. Administration of the P. macrocarpa extract and its isolated compounds significantly increased SOD, GSR, BcL-2, total protein, and miRNA132 gene expression and decreased IL-8 and IL-33 as well as brain Bax, neurogranin, and JNK levels and brain miRNA-125b gene expression compared to AlCl3-treated rats. P. macrocarpa extract and its isolated compounds ameliorated AlCl3-induced oxidative stress and neurotoxicity in rats.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Department
of Pharmacognosy, Faculty of Pharmacy, October
6 University (O6U), October
6 City, Giza 12585, Egypt
| | - Sylvia A. Boshra
- Department
of Biochemistry, Faculty of Pharmacy, October
6 University (O6U), October
6 City, Giza 12585, Egypt
| |
Collapse
|
10
|
Du Y, Li J, Cai C, Gong F, Zhou G, Liu F, Wu Q, Liu F. Plantamajoside alleviates hypoxia-reoxygenation injury through integrin-linked kinase/c-Src/Akt and the mitochondrial apoptosis signaling pathways in H9c2 myocardial cells. BMC Complement Med Ther 2023; 23:64. [PMID: 36829192 PMCID: PMC9951442 DOI: 10.1186/s12906-023-03880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Myocardial ischemia-reperfusion injury(MIRI) is one of the common complications after myocardial infarction surgery, Oxidative stress is among the main mechanisms of myocardial ischemia-reperfusion injury. Plantamajoside (PMS), the main effective ingredient in the genus Plantain, has been reported to possess an antioxidation, anti-inflammatory and anti-apoptosis role. However, whether PMS can attenuate myocardial ischemia-reperfusion injury is not yet known. Herein, we explored the effects of PMS on hypoxia-reoxygenation (H/R) injury in H9c2 cardiomyocytes and the underling molecular mechanisms of the treatment. Network pharmacological analysis screened the top 31 key genes in the treatment of MIRI disease treated with PMS, and the result of molecular docking further illustrated the roles that the PMS play in the treatment of MIRI through its interference with integrin-linked kinase (ILK) target protein. PMS was not cytotoxic in the concentration range of 5-40 μM and increased cell survival after H/R injury in a concentration-dependent manner without affecting proliferation or growth. PMS significantly reduced the levels of lactate dehydrogenase, malonic dialdehyde, reactive oxygen species and cell apoptosis, and increased soperoxide dismutase activity compared with those of the H/R injury group. PMS promoted the protein and mRNA expression of ILK and Bcl-2, the protein expression of p-Akt, and reduced the protein and mRNA expression of Bax, Caspase-3, and Cytochrome c, the protein expression of p-c-Src. PMS has protective effects against H/R injury in H9c2 cells, and its protective mechanism may be related to reactive oxygen species clearance, activation of the ILK/c-Src/Akt pathway and inhibition of the mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yuying Du
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Jia Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Chao Cai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Fanying Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Guoliang Zhou
- grid.410745.30000 0004 1765 1045The Chinese Medicine College, Nanjing University of Chinese Medicine, Nanjing, 210046 China
| | - Fang Liu
- Xuzhou Hospital of Chinese Medicine, Xuzhou, 221018 China
| | - Qiang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Fuming Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
11
|
Wu YZ, Wang KX, Ma XD, Wang CC, Chen NN, Xiong C, Li JX, Su SW. Therapeutic effects of atorvastatin on doxorubicin-induced hepatotoxicity in rats via antioxidative damage, anti-inflammatory, and anti-lipotoxicity. J Biochem Mol Toxicol 2023:e23329. [PMID: 36808658 DOI: 10.1002/jbt.23329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1β, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.
Collapse
Affiliation(s)
- Yan-Zhao Wu
- Department of Otorhinolarynology-Head and Neck Sergery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Wang
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-di Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chu-Chu Wang
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Nan-Nan Chen
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Chen Xiong
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Jun-Xia Li
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Su-Wen Su
- The Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Wan Y, He B, Zhu D, Wang L, Huang R, Wang S, Wang C, Zhang M, Ma L, Gao F. Nicorandil Ameliorates Doxorubicin-Induced Cardiotoxicity in Rats, as Evaluated by 7 T Cardiovascular Magnetic Resonance Imaging. Cardiovasc Drugs Ther 2023; 37:39-51. [PMID: 34595611 PMCID: PMC9834367 DOI: 10.1007/s10557-021-07252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mechanism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and elucidated the anti-inflammatory properties of nicorandil in rat models. METHODS Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks. Additionally, blood samples and hearts were collected to examine inflammation and histopathology. RESULTS According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations. Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response. Interestingly, similar protective results were obtained using the KATP channel opener diazoxide. CONCLUSION Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiyu Wang
- Department of Radiology, Huashan Hospital, Shanghai, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Shanghai, China
| | - Mengdi Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
14
|
Zhang Y, Shu H, Mumtaz MA, Hao Y, Li L, He Y, Jin W, Li C, Zhou Y, Lu X, Fu H, Wang Z. Transcriptome and Metabolome Analysis of Color Changes during Fruit Development of Pepper ( Capsicum baccatum). Int J Mol Sci 2022; 23:12524. [PMID: 36293402 PMCID: PMC9604368 DOI: 10.3390/ijms232012524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fruit color is one of the most critical characteristics of pepper. In this study, pepper (Capsicum baccatum L.) fruits with four trans-coloring periods were used as experimental materials to explore the color conversion mechanism of pepper fruit. By transcriptome and metabolome analysis, we identified a total of 307 flavonoid metabolites, 68 carotenoid metabolites, 29 DEGs associated with flavonoid biosynthesis, and 30 DEGs related to carotenoid biosynthesis. Through WGCNA (weighted gene co-expression network analysis) analysis, positively correlated modules with flavonoids and carotenoids were identified, and hub genes associated with flavonoid and carotenoid synthesis and transport were anticipated. We identified Pinobanksin, Naringenin Chalcone, and Naringenin as key metabolites in the flavonoid biosynthetic pathway catalyzed by the key genes chalcone synthase (CHS CQW23_29123, CQW23_29380, CQW23_12748), cinnamic acid 4-hydroxylase (C4H CQW23_16085, CQW23_16084), cytochrome P450 (CYP450 CQW23_19845, CQW23_24900). In addition, phytoene synthase (PSY CQW23_09483), phytoene dehydrogenase (PDS CQW23_11317), zeta-carotene desaturase (ZDS CQW23_19986), lycopene beta cyclase (LYC CQW23_09027), zeaxanthin epoxidase (ZEP CQW23_05387), 9-cis-epoxycarotenoid dioxygenase (NCED CQW23_17736), capsanthin/capsorubin synthase (CCS CQW23_30321) are key genes in the carotenoid biosynthetic pathway, catalyzing the synthesis of key metabolites such as Phytoene, Lycopene, β-carotene and ε-carotene. We also found that transcription factor families such as p450 and NBARC could play important roles in the biosynthesis of flavonoids and carotenoids in pepper fruits. These results provide new insights into the interaction mechanisms of genes and metabolites involved in the biosynthesis of flavonoids and carotenoids in pepper fruit leading to color changes in pepper fruit.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yongjie He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Weiheng Jin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Caichao Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
15
|
Sun X, Zhu Y, Li F, Li M, Wan G. Cardioprotective Mechanism and Active Compounds of Folium Ginkgo on Adriamycin-Induced Cardiotoxicity: A Network Pharmacology Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4338260. [PMID: 36213575 PMCID: PMC9534669 DOI: 10.1155/2022/4338260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/19/2022] [Indexed: 12/06/2022]
Abstract
Objective To investigate the mechanism of Folium Ginkgo (FG) against adriamycin-induced cardiotoxicity (AIC) through a network pharmacology approach. Methods Active ingredients of FG were screened by TCMSP, and the targets of active ingredient were collected by Genclip3 and HERB databases. AIC-related target genes were predicted by Genecards, OMIM, and CTD databases. Protein-protein interaction (PPI) network was constructed by STRING platform and imported into Cytoscape software to construct the FG-active ingredients-targets-AIC network, and CytoNCA plug-in was used to analyze and identify the core target genes. The Metascape platform was used for transcription factor, GO and signaling pathway enrichment analysis. Results 27 active ingredients of FG and 1846 potential targets were obtained and 358 AIC target genes were retrieved. The intersection of FG and AIC targets resulted in 218 target genes involved in FG action. The top 5 active ingredients with most targets were quercetin, luteolin, kaempferol, isorhamnetin, and sesamin. After constructing the FG-active ingredients-targets-AIC network, CytoNCA analysis yielded 51 core targets, of which the top ranked target was STAT3. Ninety important transcription factors were enriched by transcription factor enrichment analysis, including RELA, TP53, NFKB1, SP1, JUN, STAT3, etc. The results of GO enrichment analysis showed that the effective active ingredient targets of FG were involved in apoptotic signaling, response to growth factor, cellular response to chemical stress, reactive oxygen species metabolic process, etc. The signaling pathway enrichment analysis showed that there were many signaling pathways involved in AIC, mainly including pathways in cancer, FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, signaling by interleukins, and PI3K-AKT signaling pathway,. Conclusions The study based on a network pharmacology approach demonstrates that the possible mechanisms of FG against AIC are the involvement of multicomponents, multitargets, and multipathways, and STAT3 may be a key target. Further experiments are needed to verify the results.
Collapse
Affiliation(s)
- Xue Sun
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Yiming Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Fang Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Min Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
- Institute of Cancer, Renmin Hospital of Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
16
|
Qu J, Ke F, Yang X, Wang Y, Xu H, Li Q, Bi K. Induction of P-glycoprotein expression by dandelion in tumor and heart tissues: Impact on the anti-tumor activity and cardiotoxicity of doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154275. [PMID: 35760022 DOI: 10.1016/j.phymed.2022.154275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previously, we have investigated the anti-tumor activity and mechanism through which dandelion acts against triple-negative breast cancer (TNBC). However, traditional Chinese medicine is mostly accepted as an adjunct therapy during chemotherapy in clinical practice. So far, little is known about the effects of dandelion in conjunction with chemotherapeutic drugs. PURPOSE To investigate the effects of dandelion on the anti-tumor activity and cardiotoxicity of doxorubicin (DOX), and to further explore the molecular mechanisms through which these effects occur. STUDY DESIGN At the beginning of this study, dandelion was observed to alleviate DOX-induced cardiotoxicity and reduce the anti-tumor activity of DOX. Subsequently, we investigated whether the resistance to DOX mediated by P-glycoprotein was involved in the above effects. METHODS The cardioprotective effect of dandelion was investigated on DOX-treated mice by histological analysis, myocardial enzyme assays, and an untargeted metabolomics study based on LC-Q-TOF/MS. TNBC cell lines and 4T1 tumor-bearing mice were employed to investigate the combined anti-tumor activity. Laser scanning confocal microscope and a flow cytometry analysis were employed to measure the intracellular accumulation of DOX. A specific, sensitive, and rapid LC-MS/MS method was developed to detect the efflux of DOX from cells. Expression of P-glycoprotein in mouse tumor and heart tissues was detected via Western blotting analysis. RESULTS Dandelion was found to significantly alleviate DOX-induced cardiotoxicity, as was evidenced by improved cardiomyocyte morphology, decreased LDH and CK-MB release, and adjusted metabolic biomarker levels. However, in vitro and in vivo studies showed that dandelion could reduce the anti-tumor activity of DOX. This counteraction was achieved by activating of the drug efflux transporter P-glycoprotein, thereby promoting the efflux of DOX from cells and reducing the intracellular accumulation of DOX. Moreover, the activation of P-glycoprotein by dandelion in mouse heart tissue was also observed, thus suggesting that the decrease of cardiac DOX accumulation plays an important role in the cardioprotective effect of dandelion. CONCLUSION Dandelion can activate the P-glycoprotein in heart and tumor tissues, which ameliorates DOX-induced cardiotoxicity but attenuates DOX cytotoxicity toward TNBC. Our findings have important implications for the correct clinical use of dandelion.
Collapse
Affiliation(s)
- Jiameng Qu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Ke
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
17
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Aluganti Narasimhulu C, Singla DK. Doxorubicin-induced apoptosis enhances monocyte infiltration and adverse cardiac remodeling in diabetic animals. Can J Physiol Pharmacol 2022; 100:441-452. [PMID: 34932406 PMCID: PMC10720696 DOI: 10.1139/cjpp-2021-0596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic cancer patients were treated with doxorubicin (DOX), a potent chemotherapeutic drug that induces cardiac toxicity; however, molecular mechanisms of cardiac toxicity in this specific disease progression in patients and animal models are completely unknown. Therefore, we designed a study to understand the effects of DOX-induced cardiac toxicity in diabetic animals and the involved pathophysiological mechanisms. C57BL/6 J mice were divided into four DOX- and diabetic (streptozotocin; STZ) - treated groups; control, STZ, DOX, and DOX+STZ. At day 14, animals were sacrificed, echocardiography was used to examine heart function, and heart and blood samples were collected to investigate apoptotic mechanisms (caspase 3, BAX, B-Cell leukemia/lymphoma 2 (Bcl2)), inflammation, and cardiac remodeling. Our data shows a significant (p < 0.05) increase in glucose levels, apoptotic markers, and monocyte infiltration at the site of apoptosis and triggered inflammatory immune response (tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6)), in DOX+STZ animals compared with control and experimental groups. We also observed significant (p < 0.05) increase in myofibrillar area, fibrosis, and significantly decreased (p < 0.05) cardiac function in DOX-treated diabetic animals compared with controls. In conclusion, our data suggest that DOX induces significantly increased apoptosis, fibrosis, and structural alterations in diabetic hearts compared with non-diabetic animals.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
19
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
20
|
Nauclea orientalis (L.) Bark Extract Protects Rat Cardiomyocytes from Doxorubicin-Induced Oxidative Stress, Inflammation, Apoptosis, and DNA Fragmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1714841. [PMID: 35198093 PMCID: PMC8860544 DOI: 10.1155/2022/1714841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of anthracycline antibiotic, doxorubicin (Dox), is hampered due to the dose-dependent cardiotoxicity. The objective of the study was to explore the counteraction of aqueous bark extract of Nauclea orientalis in Dox-induced cardiotoxicity in Wistar rats. The acute and subchronic toxicity study performed with 2.0 g/kg of the plant extract revealed biochemical and haematological parameters to be within the physiological range, and no histological alterations were observed in any organs isolated. Screening of plant extract for the protection of the myocardium from Dox-induced oxidative stress, inflammation, and apoptosis was performed on five groups of rats: control, plant extract control, Dox control (distilled water (D.H2O) 2 weeks + on the 11th day single injection of Dox, 18 mg/kg), plant + Dox (2.0 g/kg plant extract 2 weeks + on the 11th day Dox, 18 mg/kg), and positive control, dexrazoxane. A significant increase in cardiac biomarkers and lipid peroxidation (p < 0.001) and a significant decrease in antioxidant parameters (p < 0.001) were observed in the Dox control group. All these parameters were reversed significantly (p < 0.05) in the plant-pretreated group. The histopathological assessment of myocardial damage provided supportive evidence for the biochemical results obtained. Inflammatory markers, myeloperoxidase, expression of TNFα and caspase-3, and DNA fragmentation (TUNEL positive nuclei) were significantly elevated (p < 0.05), and expression of Bcl-2 was significantly decreased (p < 0.05) in the Dox control; however, all these parameters were significantly reversed in the plant extract-treated group. In conclusion, the aqueous bark extract of Nauclea orientalis (2.0 g/kg) has the ability to attenuate the Dox-induced oxidative stress, inflammation, apoptosis, and DNA fragmentation in Wistar rats.
Collapse
|
21
|
Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, Dehpour AR. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol 2022; 22:292-310. [DOI: 10.1007/s12012-022-09721-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
22
|
Zhang Y, Liu S, Ma JL, Chen C, Huang P, Ji JH, Wu D, Ren LQ. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity through the AKT/Bcl-2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153815. [PMID: 34781232 DOI: 10.1016/j.phymed.2021.153815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a broad-spectrum anti-tumor drug that has been associated with cardiotoxicity. Plant extracts have been shown to confer protection against DOX-induced cardiotoxicity. Apocynum venetum L. belongs to the Apocynaceae family. Flavonoid extracted from Apocynum venetum L. possess various biological effects, such as lowering blood pressure levels, sedation, diuresis, anti-aging, and improving immunity. PURPOSE This study investigated the mechanism by which dry leaf extract of Apocynum venetum L. (AVLE) alleviates DOX-induced cardiomyocyte apoptosis. METHODS HPLC-MS/MS and HPLC methods were used to analyze the components of AVLE. The effects of DOX and AVLE on apoptosis of H9c2 and HMC cells were assessed using the MTT assay. Calcein AM/PI, TUNEL, and flow cytometry were carried out to determine the effects of AVLE on DOX-induced apoptosis. The effect of AVLE on DOX-induced oxidative stress in cardiomyocytes was investigated using ELISA test. Mito-Tracker Red CMXRos, JC-1, and RT-qPCR assays were performed to evaluate the impact of AVLE on DOX-induced cardiomyocyte mitochondrial activity and membrane permeability. Western blot assay was carried out to determine the activation of multiple signaling molecules, including phosphorylated-protein kinase B (p-AKT), Cytochrome c, Bcl-2 family, and caspase family in the apoptosis pathway. The AKT inhibitor was used to block AKT/Bcl-2 signaling pathway to investigate the role of AKT in the protection conferred by AVLE against DOX-induced cardiotoxicity. RESULTS A total of 8 compounds, including rutin, hyperoside, isoquercetin, unidentified compounds, myricetin, quercetin, quercetin-3-O-glucuronide and kaempferol, were detected in AVLE. Of note, DOX suppressed lactate dehydrogenase (LDH) levels, aggravated oxidative stress, and promoted cardiomyocyte apoptosis. It also upregulated the mRNA expression levels of voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD), while suppressing mitochondrial activity and mitochondrial membrane permeability. Treatment with DOX altered the expression levels of apoptosis-associated proteins, Bcl-2 and Bax. However, AVLE treatment alleviated DOX-induced effects on cardiomyocytes. In addition, application of AKT inhibitors promoted DOX-induced apoptosis and reversed the inhibitory effects of AVLE on DOX-induced apoptosis. CONCLUSIONS AVLE confer cardio protection by suppressing oxidative stress and apoptosis of cardiomyocytes via AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jiu-Long Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jia-Hua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Di Wu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
23
|
miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. DISEASE MARKERS 2021; 2021:8709298. [PMID: 34868398 PMCID: PMC8639278 DOI: 10.1155/2021/8709298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Objective Myocardial ischemia-reperfusion (I/R) injury (MIRI) refers to the more serious myocardial injury after blood flow recovery, which seriously affects the prognosis of patients with ischemic cardiomyopathy. This study explored the new targets for MIRI treatment by investigating the effects of miR-190-5p and its downstream target on the structure and function of myocardial cells. Methods We injected agomir miR-190-5p into the tail vein of rats to increase the expression of miR-190-5p in rat myocardial cells and made an I/R rat model by coronary artery occlusion. We used 2,3,5-triphenyl tetrazolium chloride staining, lactate dehydrogenase (LDH) detection, echocardiography, and hematoxylin-eosin (HE) staining to determine the degree of myocardial injury in I/R rats. In addition, we detected the expression of inflammatory factors and apoptosis-related molecules in rat serum and myocardial tissue to determine the level of inflammation and apoptosis in rat myocardium. Finally, we determined the downstream target of miR-190-5p by Targetscan system and dual luciferase reporter assay. Results The expression of miR-190-5p in an I/R rat myocardium was significantly lower than that in normal rats. After treatment of I/R rats with agomir miR-190-5p, the ischemic area of rat myocardium and the concentration of LDH decreased. The results of echocardiography and HE staining also found that overexpression of miR-190-5p improved the structure and function of rat myocardium. miR-190-5p was also found to improve the viability of H9c2 cells in vitro and reduce the level of apoptosis of H9c2 cells. The results of Targetscan system and dual luciferase reporter assay found that miR-190-5p targeted to inhibit pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1). In addition, inhibition of PHLPP1 was found to improve the viability of H9c2 cells. Conclusion Therefore, miR-190-5p can reduce the inflammation and apoptosis of myocardium by targeting PHLPP1, thereby alleviating MIRI.
Collapse
|
24
|
Dan H, Haichao Z, Ziyang Y, Di Z, Shuihan Z. Protective effects of Fufang Ejiao Jiang against aplastic anemia assessed by network pharmacology and metabolomics strategy. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
25
|
Luteolin Improves Cyclophosphamide-Induced Cystitis through TXNIP/NLRP3 and NF- κB Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1718709. [PMID: 34804174 PMCID: PMC8601811 DOI: 10.1155/2021/1718709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Hemorrhagic cystitis is an important complication of cyclophosphamide chemotherapy, and current therapies for the disease are limited. The natural flavonoid luteolin (LUT) has significant anti-inflammatory and antioxidant properties, but its protective effect on cyclophosphamide (CYP)-induced bladder toxicity has yet to be evaluated. This study aims to explore the protective effect of LUT on CYP-induced acute cystitis in rats. Female Sprague-Dawley rats were randomly assigned to the control (CON) group, CON + LUT group, CYP group, and CYP + LUT group. A single intraperitoneal injection of CYP was administered to establish an acute hemorrhagic cystitis model. HE staining was performed to detect the degree of bladder tissue damage, and TUNEL staining was performed to count apoptotic cells. Oxidative stress indicators were measured using commercial kits, and bladder surgery was performed to assess urinary function. The levels of inflammatory cytokines, apoptosis-related indicators, TXNIP/NLRP3 pathway, and NF-κB pathway were detected by western blot. We found that LUT treatment reduced bladder bleeding, congestion, and edema caused by CYP. Compared with the CYP + LUT group, the level of apoptosis was more highly expressed in the CYP group. We also found that caspase-3, caspase-8, and Bax were significantly upregulated and Bcl-2 was downregulated after LUT treatment. In addition, LUT inhibited the activation of NF-κB signal pathway in the rat bladder tissue after CYP exposure. LUT treatment can also reduce the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) and TXNIP in the bladder. Finally, LUT can reduce the increase in the urination frequency and maximum urination pressure caused by cystitis. These results indicate that LUT displays effective anti-inflammatory, antioxidant, and antiapoptotic properties in CYP-induced acute hemorrhagic cystitis rats by inhibiting the TXNIP/NLRP3 and NF-κB pathways. LUT may be a potent therapeutic agent for the prevention and treatment of hemorrhagic cystitis.
Collapse
|
26
|
Targeting Oxidative Stress, NLRP3 Inflammasome, and Autophagy by Fraxetin to Combat Doxorubicin-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2021; 14:ph14111188. [PMID: 34832970 PMCID: PMC8621693 DOI: 10.3390/ph14111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin belongs to the class of anthracycline antibiotics that is widely used in the treatment protocols of a wide range of malignancies. The major deleterious effect of doxorubicin use is the possible occurrence of cardiotoxicity. This study aimed to delineate the possible effects of targeting oxidative stress, NLRP3 inflammasome, and autophagy by fraxetin on doxorubicin-induced cardiac dysfunction in rats. In a model of doxorubicin-induced cardiotoxicity, the effects of different doses of fraxetin were assessed by determination of biochemical, histopathological, immunohistochemical, and electron microscopic changes. Fraxetin, in a dose-dependent manner, was found to have the ability to mitigate the harmful effects of oxidative stress and inflammation on myocardial muscles with significant decrease in NLRP3 inflammasome, augmentation of autophagy, and amelioration of the apoptotic signaling pathways. In addition, fraxetin, in a dose-dependent manner, had the ability to combat the echocardiographic, histopathological, immunohistochemical, and electron microscopic changes induced by doxorubicin in cardiomyocytes. As a result, fraxetin may be put into consideration as a new adjuvant line of therapy on the way to mitigate doxorubicin-induced cardiotoxicity.
Collapse
|
27
|
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol 2021; 36:e22962. [PMID: 34766659 DOI: 10.1002/jbt.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in the treatment of various cancer types. DOX toxic side effects include neuronopathy and memory deficits. We investigated the effect of the antioxidant luteolin (LUT: 50 or 100 mg/kg; per os) on DOX (2 mg/kg; intraperitoneal)-induced oxidative stress (OS), inflammation, and apoptosis in the brain of Wistar rats for 14 days. We observed that LUT reduced DOX-mediated increase in OS biomarkers-catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase. LUT increased glutathione and total sulphydryl levels and alleviated DOX-induced increases in the levels of reactive oxygen and nitrogen species, lipid peroxidation, myeloperoxidase, nitric oxide, tumor necrosis factor-α, and interleukin-1β (IL-1β). Additionally, LUT suppressed caspase-3 activity, increased anti-inflammatory cytokine-IL-10 level, and reduced pathological lesions in the examined organs of rats cotreated with LUT and DOX. Collectively, cotreatment with LUT lessened DOX-induced neurotoxicity. Supplementation of LUT as a chemopreventive agent might be useful in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- CRMB Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1987588. [PMID: 34594472 PMCID: PMC8478534 DOI: 10.1155/2021/1987588] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Luteolin is a naturally occurring secondary metabolite belonging to the class of flavones. As many other natural flavonoids, it is often found in combination with glycosides in many fruits, vegetables, and plants, contributing to their biological and pharmacological value. Many preclinical studies report that luteolin present excellent antioxidant, anticancer, antimicrobial, neuroprotective, cardioprotective, antiviral, and anti-inflammatory effects, and as a consequence, various clinical trials have been designed to investigate the therapeutic potential of luteolin in humans. However, luteolin has a very limited bioavailability, which consequently affects its biological properties and efficacy. Several drug delivery strategies have been developed to raise its bioavailability, with nanoformulations and lipid carriers, such as liposomes, being the most intensively explored. Pharmacological potential of luteolin in various disorders has also been underlined, but to some of them, the exact mechanism is still poorly understood. Given the great potential of this natural antioxidant in health, this review is aimed at providing an extensive overview on the in vivo pharmacological action of luteolin and at stressing the main features related to its bioavailability, absorption, and metabolism, while essential steps determine its absolute health benefits and safety profiles. In addition, despite the scarcity of studies on luteolin bioavailability, the different drug delivery formulations developed to increase its bioavailability are also listed here.
Collapse
|
29
|
Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021; 26:4021. [PMID: 34209338 PMCID: PMC8272101 DOI: 10.3390/molecules26134021] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.
Collapse
Affiliation(s)
- Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Somi Priya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India;
| | - Karla Damián Medina
- Food Technology Unit, Centre for Research and Assistance in Technology and Design of Jalisco State A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
| | - Sanjay G. Walode
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| | - Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| |
Collapse
|
30
|
Tian G, Yu Y, Deng H, Yang L, Shi X, Yu B. Empagliflozin alleviates ethanol-induced cardiomyocyte injury through inhibition of mitochondrial apoptosis via a SIRT1/PTEN/Akt pathway. Clin Exp Pharmacol Physiol 2021; 48:837-845. [PMID: 33527532 DOI: 10.1111/1440-1681.13470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 01/20/2023]
Abstract
Ethanol-induced myocardial injury involves multiple pathophysiological processes including apoptosis. Empagliflozin (EMPA), is a novel hypoglycaemic drug which possesses multiple pharmacologically relevant protective effects, including anti-apoptotic, anti-inflammatory and antioxidant effects. However, whether EMPA treatment has a protective effect on ethanol-induced myocardial injury has not been assessed, to the best of our knowledge. Therefore, the aim of this study was to determine the effect of EMPA treatment on ethanol-induced myocardial injury and the underlying mechanism. An ethanol-induced myocardial injury model was established by culturing H9c2 cells treated with 200 mmol/L ethanol for 24 hours, and additional groups of ethanol treated cells were also treated with EMPA with or without SIRT1 inhibitors prior to ethanol treatment. Cell viability and apoptosis were assessed using a CCK-8 assay and flow cytometry, respectively. The expression of apoptosis-related proteins was assessed using western blotting. The results showed that EMPA pretreatment resulted in increased cell viability and a decrease in LDH activity. Moreover, EMPA pretreatment significantly reduced apoptosis of cardiomyocytes, and reduced the expression of cleaved caspase 3. Furthermore, EMPA increased the expression of SIRT1, increased the phosphorylation levels of Akt, and reduced the expression of PTEN. EMPA also reduced ethanol-induced mitochondrial apoptosis, increasing the Bcl-2/Bax ratio and the mitochondrial membrane potential. However, the cardioprotective effects of EMPA were abrogated when cells were pretreated with a SIRT1 inhibitor. In conclusion, EMPA can alleviate ethanol-induced myocardial injury by inhibiting mitochondrial apoptosis via the SIRT1/PTEN/Akt pathway. Therefore, EMPA may be a novel target for treatment of ethanol-induced myocardial injury.
Collapse
Affiliation(s)
- Ge Tian
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hanyu Deng
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liu Yang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojing Shi
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol 2021; 40:1656-1672. [PMID: 33827303 DOI: 10.1177/09603271211006171] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin is an effective anti-neoplastic agent; the reported toxicities of DOX limit its use. Luteolin is a polyphenolic phytochemical that exhibits beneficial biological effects via several mechanisms. We investigate luteolin protective effects on hepatorenal toxicity associated with doxorubicin treatment in rats. For 2 weeks, randomly assigned rat cohorts were treated as follows: control, luteolin (100 mg/kg; per os), doxorubicin alone (2mg/kg; by intraperitoneal injection), co-treated cohorts received luteolin (50 and 100 mg/kg) in addition to doxorubicin. Treatment with doxorubicin alone significantly (p < 0.05) increased biomarkers of hepatorenal toxicities in the serum. Doxorubicin also reduced relative organ weights, antioxidant capacity, and anti-inflammatory cytokine interleukine-10. Doxorubicin also increased reactive oxygen and nitrogen species, lipid peroxidation, pro-inflammatory-interleukin-1β and tumour necrosis factor-α-cytokine, and apoptotic caspases-3 and -9). Morphological damage accompanied these biochemical alterations in the rat's liver and kidney treated with doxorubicin alone. Luteolin co-treatment dose-dependently abated doxorubicin-mediated toxic responses, improved antioxidant capacity and interleukine-10 level. Luteolin reduced (p < 0.05) lipid peroxidation, caspases-3 and -9 activities and marginally improved rats' survivability. Similarly, luteolin co-treated rats exhibited improvement in hepatorenal pathological lesions observed in rats treated with doxorubicin alone. In summary, luteolin co-treatment blocked doxorubicin-mediated hepatorenal injuries linked with pro-oxidative, inflammatory, and apoptotic mechanisms. Therefore, luteolin can act as a chemoprotective agent in abating toxicities associated with doxorubicin usage and improve its therapeutic efficacy.
Collapse
Affiliation(s)
- S E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Lewu
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - U O Arunsi
- School of Medicine, Cancer Immunology and Biotechnology, Department of Biosciences, University of Nottingham, UK
| | - A K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, 1372Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
32
|
Xing E, Du Y, Yin J, Chen M, Zhu M, Wen X, Xu J, Feng Y, Meng S. Multi-functional Nanodrug Based on a Three-dimensional Framework for Targeted Photo-chemo Synergetic Cancer Therapy. Adv Healthc Mater 2021; 10:e2001874. [PMID: 33448142 DOI: 10.1002/adhm.202001874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Targeted synergistic therapy has broad prospects in tumor treatments. Here, a multi-functional nanodrug GDYO-CDDP/DOX@DSPE-PEG-MTX (GCDM) based on three traditional anticancer drugs (doxorubicin (DOX), cisplatin (CDDP) and methotrexate (MTX)) modified graphdiyne oxide (GDYO) is described, for diagnosis and targeted cancer photo-chemo synergetic therapy. In this system, for the first time, these three traditional anti-cancer drugs have played new roles and can reduce multidrug resistance through synergistic anti-tumor effects. Cisplatin can be hybridized with GDYO to form a multifunctional and well-dispersed three-dimensional framework, which can not only be used as nano-drug carriers to achieve high drug loading rates (40.3%), but also exhibit excellent photothermal conversion efficiency (47%) and good photodynamic effects under NIR irradiation. Doxorubicin (DOX) is loaded onto GDYO-CDDP through π-π stacking, which is used as an anticancer drug and as a fluorescent probe for nanodrug detection. Methotrexate (MTX) can be applied in tumor targeting and play a role in synergistic chemotherapy with DOX and CDDP. The synthesized multi-functional nanodrug GCDM has good biocompatibility, active targeting, long-term retention, sustained drug release, excellent fluorescence imaging capabilities, and remarkable photo-chemo synergistic therapeutic effects.
Collapse
Affiliation(s)
- Enyun Xing
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| | - Yingying Du
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| | - Juanjuan Yin
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| | - Minghui Chen
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| | - Mengyao Zhu
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| | - Xiaona Wen
- Department of Pharmacy The Third Central Hospital of Tianjin Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases Artificial Cell Engineering Technology Research Center Tianjin Institute of Hepatobiliary Disease Tianjin 300170 China
| | - Jialiang Xu
- School of Materials Science and Engineering Nankai University Tianjin 300350 P.R. China
| | - Yaqing Feng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
- Tianjin Co‐Innovation Center of Chemical Science and Engineering Tianjin University Tianjin 300072 P.R. China
| | - Shuxian Meng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300050 P.R. China
| |
Collapse
|
33
|
Elblehi SS, El-Sayed YS, Soliman MM, Shukry M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals (Basel) 2021; 11:ani11030886. [PMID: 33804672 PMCID: PMC8003775 DOI: 10.3390/ani11030886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of date palm pollen ethanolic extract (DPPE) is a conventional approach in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition, serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic (Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating inflammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative stress injuries and other detrimental effects, a combined treatment of DPPE is advocated. Abstract Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Samar S. Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Edfina 22758, Egypt
- Correspondence: (S.S.E.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.S.E.); (M.S.)
| |
Collapse
|