1
|
Xiao Z, Chen Y, Wang X, Sun Q, Tu T, Liu J, Nie C, Gao Z. Effect of runx2b deficiency in intermuscular bones on the regulatory network of lncRNA-miRNA-mRNA. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101171. [PMID: 38103500 DOI: 10.1016/j.cbd.2023.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Intermuscular bones (IBs) are mineralized spicules that negatively impact the quality and value of fish products. Runx2b is a crucial modulator in promoting bone formation through regulating osteoblast differentiation. Previous studies suggested that loss of runx2b gene completely inhibited IBs formation in zebrafish. However, how the whole transcriptome, including mRNA and non-coding RNA (ncRNA), affects the IBs development in runx2b-/- zebrafish are not known. The aim of this study was to identify the regulatory networks of differentially expressed (DE) lncRNAs, miRNAs, and mRNAs in zebrafish with and without IBs (runx2b+/+ fish and runx2b-/- fish) utilizing high-throughput sequencing techniques. All together there are 1051 mRNAs, 456 lncRNAs, and 18 miRNAs differentially expressed were found between these two strains. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) has highlighted significant pathways linked to the development of IBs, specifically the TGF-beta and Wnt signaling pathways, and a number of genes concentrated on these two signaling pathways related to the formation of IBs. Further, 1989 competing endogenous RNA (ceRNA) networks were created according to the correlation among mRNAs, miRNAs and lncRNAs. The ceRNA networks results revealed 52 ceRNA pairs related to the IBs formation, consisting of 52 mRNAs, 37 lncRNAs, and 6 miRNAs. Of these, we found that dre-miR-2189 was the key element of ceRNA pairs, interacting with 19 mRNAs and 11 lncRNAs, and MSTRG.13175.1 could regulate sp7 expression by interacting with dre-miR-2189 to function in osteogenic differentiation. Subsequent experiments at the cellular level also revealed the interaction mechanism. The outcomes indicated a crucial role of miRNAs and lncRNAs in the development of fish IBs, which offer new views into the functions of ncRNAs involved in IBs formation.
Collapse
Affiliation(s)
- Zhengyu Xiao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulong Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xudong Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiujie Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tan Tu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junqi Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
3
|
Lu Y, Pan K, Zhang Y, Peng J, Cao D, Li X. The mechanism of lncRNA SNHG1 in osteogenic differentiation via miR-497-5p/ HIF1AN axis. Connect Tissue Res 2024; 65:63-72. [PMID: 37966352 DOI: 10.1080/03008207.2023.2281321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
The pivotal role of lncRNAs in osteoporosis progression and development necessitates a comprehensive exploration of the functional and precise molecular mechanisms underlying lncRNA SNHG1's regulation of osteoblast differentiation and calcification. The study involved inducing BMSCs cells to differentiate into osteoblasts, followed by transfections of miR-497-5p inhibitors, pcDNA3.1-SNHG1, sh-HIF1AN, miR-497-5p mimics, and respective negative controls into BMSCs. Quantitative PCR (qPCR) was employed to assess the expression of SNHG1 and miR-497-5p. Western Blotting was conducted to measure the levels of short stature-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and HIF1AN. Alkaline phosphatase (ALP) activity was determined using appropriate assay kits. Calcium nodule staining was performed through Alizarin red staining. Dual luciferase reporter gene assays were executed to validate the interaction between SNHG1 and miR-497-5p, as well as HIF1AN. Throughout osteogenic differentiation, there was a down-regulation of SNHG1 and HIF1AN, in contrast to an elevation in miR-497-5p levels. Direct interactions between miR-497-5p and both SNHG1 and HIF1AN were observed. Notably, SNHG1 exhibited the ability to modulate HIF1AN by influencing miR-497-5p, thereby inhibiting osteogenic differentiation. Functioning as a competitive endogenous RNA, lncRNA SNHG1 exerts an inhibitory influence on osteogenic differentiation via the miR-497-5p/HIF1AN axis. This highlights the potential for lncRNA SNHG1 to emerge as a promising therapeutic target for osteoporosis. The study's findings pave the way for a novel target strategy in the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Kaihua Pan
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Yunqing Zhang
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Daning Cao
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Xiaoming Li
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| |
Collapse
|
4
|
Ye L, Cheng X, Shi Y, Liu Z, Xiong Y, Huang Y. Long non-coding RNA MEG3 alleviates postoperative cognitive dysfunction by suppressing inflammatory response and oxidative stress via has-miR-106a-5p/SIRT3. Neuroreport 2023; 34:357-367. [PMID: 36966803 DOI: 10.1097/wnr.0000000000001901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Postoperative cognitive dysfunction (POCD), a neurological complication after surgery, is common among the elderly in particular. Maternal expression gene 3 (MEG3) is a novel long non-coding RNA (lncRNA) that contributes to glial cell activation and inflammation. We aim to further explore its role in POCD. Mice were induced with sevoflurane anesthesia and underwent orthopedic surgery to establish a POCD model. BV-2 microglia activation was induced by lipopolysaccharide. The overexpressed lentiviral plasmid lv-MEG3 and its control were injected into mice. pcDNA3.1-MEG3, has-miR-106a-5p mimic, and its negative control were transfected into BV-2 cells. The expressions of has-miR-106a-5p MEG3 and Sirtuin 3 (SIRT3) in rat hippocampus and BV-2 cells were quantitatively detected. Levels of SIRT3, TNF-α, and IL-1β were detected by western blot, levels of TNF-α and IL-1β by ELISA, and expression of GSH-Px, SOD, and MDA by kits. The targeting relationship between MEG3 and has-miR-106a-5p was confirmed using bioinformatics and dual-luciferase reporter assay. LncRNA MEG3 was down-regulated in POCD mice, whereas has-miR-106a-5 levels were up-regulated. Overexpression of MEG3 could attenuate cognitive dysfunction and inflammatory response in POCD mice, inhibit lipopolysaccharide-induced inflammatory response and oxidative stress in BV-2 cells, and promote has-miR-106a through competitive binding with has-miR-106a-5-5 expression of target gene SIRT3. Overexpression of has-miR-106a-5p had a reverse effect on overexpression of MEG3 functioning on lipopolysaccharide-induced BV-2 cells. LncRNA MEG3 could inhibit the inflammatory response and oxidative stress via has-miR-106a-5p/SIRT3, thereby reducing POCD, which might be a potential biological target for the diagnosis and treatment of clinical POCD.
Collapse
Affiliation(s)
- Lingling Ye
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoe Cheng
- Department of Anesthesia Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yinqi Shi
- Department of Anesthesia Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ziye Liu
- Department of Anesthesia Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yingfen Xiong
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuanlu Huang
- Department of Anesthesia Operation, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Zhang K, Liu X, Tang Y, Liu Z, Yi Q, Wang L, Geng B, Xia Y. Fluid Shear Stress Promotes Osteoblast Proliferation and Suppresses Mitochondrial-Mediated Osteoblast Apoptosis Through the miR-214-3p-ATF4 Signaling Axis. Physiol Res 2022. [DOI: 10.33549/physiolres.934917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in bone metabolism and participate in the mechanically induced bone alterations. The underlying molecular mechanisms by which fluid shear stress (FSS) regulate the proliferative and apoptotic phenotypic changes of osteoblasts remain elusive. The study aimed to investigate the regulatory effects of FSS on osteoblast proliferative and apoptotic phenotypes and the roles of miR-214-3p-ATF4 (activating transcription factor 4) signaling axis in the mechanomodulation processes. FSS promoted the proliferative activity of osteoblasts and suppressed mitochondrial-mediated osteoblast apoptosis. FSS decreased miR-214-3p expression and increased ATF4 expression in MC3T3-E1 osteoblasts. MiR-214-3p inhibited osteoblast proliferative activity and promoted mitochondrial-mediated osteoblast apoptosis. Overexpression of miR-214-3p attenuated FSS-enhanced osteoblast proliferation and FSS-suppressed mitochondrial-mediated osteoblast apoptosis. We validated that ATF4 acted as a target gene of miR-214-3p. Moreover, miR-214 3p regulated osteoblast proliferation and apoptosis through targeting ATF4. Taken together, our study proved that FSS could suppress mitochondrial-mediated osteoblast apoptosis and promote osteoblast proliferation through the miR-214-3p-ATF4 signaling axis.
Collapse
Affiliation(s)
- K Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou Gansu, China, Orthopaedics Key Laboratory of Gansu Province, Lanzhou Gansu, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
7
|
Chen J, Yang Y. LncRNA HAGLR absorbing miR-214-3p promotes BMP2 expression and improves tibial fractures. Am J Transl Res 2021; 13:11065-11080. [PMID: 34786043 PMCID: PMC8581928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine whether long-chain non-coding RNA (lncRNA) HAGLR can regulate BMP2 by absorbing microRNA-214-3p (miR-214-3p), and to explore its role and mechanism in tibial fracture (TF) healing. METHODS The HAGLR, miR-214-3p, and BMP2 expression levels in TF and in adjacent normal tissues were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 osteoblasts were used to construct the in vitro model. HAGLR was localized subcellularly through RNA-fluorescence in situ hybridization (FISH). A dual-luciferase report experiment confirmed that miR-214-3p has a targeted relationship with HAGLR and BMP2. It was then divided into a HAGLR over-expression group, an miR-214-3p mimic group, a HAGLR+miR-214-3p mimic group, an sh-HAGLR group, a BMP over-expression group, an sh-HAGLR+over-expression BMP2 group, and a negative control group. The proliferation and apoptosis of the MC3T3-E1 osteoblasts were examined using MTT assays and flow cytometry. A TF model was established in male C57BL/6J mice. The serum alkaline phosphatase (ALP) and osteoprotegerin (OPG) levels in the sham group, the TF group, and the TF group that were injected with HAGLR were compared using ELISA. Hematoxylin-eosin (HE) staining was used to confirm the fracture healing in the mouse model. RESULTS Compared with the adjacent normal tissues in the TF patients, the HAGLR and BMP2 expressions decreased but the miR-214-3p expressions increased in the TF tissues (P<0.05). HAGLR, an endogenous sponge, absorbed the miR-214-3p, and the BMP2 expression was directly regulated by miR-214-3p. HAGLR increased the proliferative activity of the osteoblasts and decreased the apoptosis rate. The over-expression of miR-214-3p partly reversed the effect of HAGLR on the cells, decreased the proliferative activity, and increased the apoptosis rate (all P<0.05). The sh-HAGLR decreased the proliferative activity and increased the apoptosis rate. But after the over-expression of BMP2, the proliferative activity of the cells was higher, and the apoptosis rate was lower than it was in the sh-HAGLR group (all P<0.05). The over-expression of HAGLR can up-regulate the ALP and OPG levels in mouse models (P<0.05). CONCLUSION lncRNA HAGLR can regulate BMP2 to play a protective role in TF by absorbing miR-214-3p, and it is related to promoting the osteoblast proliferation, inhibiting apoptosis, and up-regulating the serum ALP and OPG levels to accelerate bone healing.
Collapse
Affiliation(s)
- Jinlong Chen
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University Zhangzhou 363000, Fujian Province, China
| | - Yishan Yang
- Department of Orthopedics, Zhangzhou Affiliated Hospital of Fujian Medical University Zhangzhou 363000, Fujian Province, China
| |
Collapse
|
8
|
Pang M, Wei HX, Chen X. Long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 regulates the proliferation and osteogenic differentiation of human periodontal ligament stem cells by targeting miR-24-3p. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:547-554. [PMID: 34636202 DOI: 10.7518/hxkq.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study aims to explore the effect and molecular mechanism of long non-coding RNA (lncRNA) potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) on proliferation and osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS The hPDLSCs of normal periodontal tissues were isolated and cultured. The mineralized solution induced the osteoblast differentiation of hPDLSCs. The down-regulation of lncRNA KCNQ1OT1, the overexpression of anti-miR-24-3p on the proliferation and the levels of osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) of hPDLSCs were investigated. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA KCNQ1OT1, miR-24-3p, OCN, OPN, and ALP. Methyl thiazolyl tetrazolium (MTT) method was used to detect cell viability and activity. Cell proliferation was evaluated by MTT. Western blot was used to detect protein expression. The targeted relationship between lncRNA KCNQ1OT1 and miR-24-3p was detected by double-luciferase experiment. RESULTS The expression level of lncRNA KCNQ1OT1 increased, and that of miR-24-3p decreased during the osteogenesis of hPDLSCs (P<0.05). The down-regulation of lncRNA KCNQ1OT1 inhibited cell proliferation and reduced the mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). LncRNA KCNQ1OT1 targeted and regulated miR-24-3p. The overexpression of miR-24-3p inhibited cell proliferation and reduced the mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). Inhibition of miR-24-3p reversed the effect of the down-regulation of lncRNA KCNQ1OT1 on cell proliferation and mRNA and protein expression levels of OCN, OPN, and ALP (P<0.05). CONCLUSIONS Down-regulation of lncRNA KCNQ1OT1 inhibited the proliferation and osteogenic differentiation of hPDLSCs by targeting the up-regulated expression of miR-24-3p.
Collapse
Affiliation(s)
- Ming Pang
- Dept. of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Hong-Xia Wei
- Dept. of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China
| | - Xi Chen
- Dept. of Stomatology, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China
| |
Collapse
|
9
|
Aurilia C, Donati S, Palmini G, Miglietta F, Iantomasi T, Brandi ML. The Involvement of Long Non-Coding RNAs in Bone. Int J Mol Sci 2021; 22:ijms22083909. [PMID: 33920083 PMCID: PMC8069547 DOI: 10.3390/ijms22083909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
A harmonious balance between osteoblast and osteoclast activity guarantees optimal bone formation and resorption, pathological conditions affecting the bone may arise. In recent years, emerging evidence has shown that epigenetic mechanisms play an important role during osteoblastogenesis and osteoclastogenesis processes, including long non-coding RNAs (lncRNAs). These molecules are a class of ncRNAs with lengths exceeding 200 nucleotides not translated into protein, that have attracted the attention of the scientific community as potential biomarkers to use for the future development of novel diagnostic and therapeutic approaches for several pathologies, including bone diseases. This review aims to provide an overview of the lncRNAs and their possible molecular mechanisms in the osteoblastogenesis and osteoclastogenesis processes. The deregulation of their expression profiles in common diseases associated with an altered bone turnover is also described. In perspective, lncRNAs could be considered potential innovative molecular biomarkers to help with earlier diagnosis of bone metabolism-related disorders and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (C.A.); (S.D.); (G.P.); (F.M.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|