1
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Fu R, Zhao B, Chen M, Fu X, Zhang Q, Cui Y, Hu X, Zhou W. Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol 2023; 41:9. [PMID: 38063931 DOI: 10.1007/s12032-023-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Cisplatin, a classical platinum-based chemotherapy agent, has been a frontline treatment for various cancers for decades. However, its effectiveness has been hindered by the development of resistance, leading to cancer relapse. Addressing this challenge is crucial for both clinical practice and research. Hence, the imperative to unravel the intricate mechanisms underpinning cisplatin resistance and to uncover novel strategies to overcome this barrier holds immense significance. Within this review, we summarized the classification of platinum agents, highlighting their roles in therapeutic landscapes. We discussed the diverse mechanisms behind cisplatin resistance, including diminished intracellular cisplatin accumulation, intracellular detoxification, DNA repair, autophagy responses, heat shock proteins, tumor microenvironment, cancer stem cells, epigenetic regulation, ferroptosis resistance, and metabolic reprogramming. Drawing from this comprehensive understanding, we offered a series of prospective solutions to surmount cisplatin resistance and consequently mitigate the specter of disease recurrence within the realm of clinical cancer therapy.
Collapse
Affiliation(s)
- Rui Fu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Borui Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Min Chen
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaolong Fu
- Department of Stomatology, Tianjin Haihe Hospital, Tianjin, 300222, China
| | - Qian Zhang
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yange Cui
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Xin Hu
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China.
| | - Wei Zhou
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Deng S, Qian L, Liu L, Liu H, Xu Z, Liu Y, Wang Y, Chen L, Zhou Y. Circular RNA ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by interacting with AUF1. Cancer Sci 2023; 114:1582-1595. [PMID: 36632741 PMCID: PMC10067438 DOI: 10.1111/cas.15723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is one of the leading causes of cancer death in women worldwide. Patients with advanced cervical carcinoma always have a poor prognosis once resistant to cisplatin due to the lack of effective treatment. It is urgent to investigate the molecular mechanisms of cisplatin resistance. Circular RNAs (circRNAs) are known to exert their regulatory functions in a series of malignancies. However, their effects on CSCC remain to be elucidated. Here, we found that cytoplasmic circARHGAP5, derived from second and third exons of the ARHGAP5 gene, was downregulated in cisplatin-resistant tissues compared with normal cervix tissues and untreated cervical cancer tissues. In addition, experiments from overexpression/knockdown cell lines revealed that circARHGAP5 could inhibit cisplatin-mediated cell apoptosis in CSCC cells both in vitro and in vivo. Mechanistically, circARHGAP5 interacted with AU-rich element RNA-binding protein (AUF1) directly. Overexpression of AUF1 could also inhibit cell apoptosis mediated by cisplatin. Furthermore, we detected the potential targets of AUF1 related to the apoptotic pathway and found that bcl-2-like protein 11 (BIM) was not only negatively regulated by AUF1 but positively regulated by circARHGAP5, which indicated that BIM mRNA might be degraded by AUF1 and thereby inhibited tumor cell apoptosis. Collectively, our data indicated that circARHGAP5 directly bound to AUF1 and prevented AUF1 from interacting with BIM mRNA, thereby playing a pivotal role in cisplatin resistance in CSCC. Our study provides insights into overcoming cancer resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Sisi Deng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Lili Qian
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Luwen Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyuan Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhihao Xu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yujie Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yingying Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ying Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
4
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
5
|
Zhou M, Liu L, Wang J, Liu W. The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol 2022; 10:1060909. [PMID: 36438563 PMCID: PMC9682114 DOI: 10.3389/fcell.2022.1060909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is one of the common tumors and often causes cancer-related death in women. Chemotherapy is a common cancer therapy, which displays a pivotal clinical benefit for cancer patients. However, chemoresistance becomes a big obstacle for failure of treatment in cancer patients. Recently, long noncoding RNAs (lncRNAs) have been identified to regulate drug resistance in human cancers, including cervical cancer. In this review, we describe the role of lncRNAs in regulation of chemotherapeutic resistance in cervical cancer. We also discuss the molecular mechanisms of lncRNA-mediated drug resistance in cervical cancer. Moreover, we describe that targeting lncRNAs could reverse drug resistance in cervical cancer. Therefore, lncRNAs could become effective therapeutic targets and chemotherapeutic sensitizers for cervical cancer patients.
Collapse
|
6
|
Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther 2022; 28:884-896. [PMID: 35332692 PMCID: PMC9062567 DOI: 10.1111/cns.13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glioma is the most frequent primary cerebral tumor in adults. Recent evidence has suggested that circular RNAs (circRNAs) are associated with the pathological processes in glioma. In our study, we aimed to investigate the function and mechanism of circ_CAPG (circ_0055412) in glioma. METHODS Firstly, circ_0055412 expression was examined through RT-qPCR analysis. Loss-of-function assays and animal experiments were implemented to evaluate the role of circ_0055412 on cisplatin resistance of glioma cells. Moreover, mechanism assays were done to probe into the regulatory mechanism of circ_0055412 in glioma cells. RESULTS Circ_0055412 was found to be notably upregulated in glioma cells. Moreover, depletion of circ_0055412 enhanced cisplatin sensitivity of glioma cells in vitro and in vivo. Moreover, circ_0055412 recruited eukaryotic translation initiation factor 4A3 (EIF4A3) protein to stabilize capping actin protein, gelsolin like (CAPG) mRNA. Furthermore, circ_0055412 served as a sponge for microRNA-330-3p (miR-330-3p) and regulated nuclear factor of activated T cells 3 (NFATC3) expression to activate the transcription of catenin beta 1 (CTNNB1), thus participating in the activation of Wnt/β-catenin signaling pathway. CONCLUSION Circ_0055412 contributed to cisplatin resistance of glioma cells via stabilizing CAPG mRNA and modulating Wnt/β-catenin signaling pathway. This finding might provide novel information for the treatment of glioma.
Collapse
Affiliation(s)
- Qingjiu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiang Fu
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mahati Shaya
- Department of Oncology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yalikun Kugeluke
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shaoshan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yisireyili Dilimulati
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Zhou F, Ding W, Mao Q, Jiang X, Chen J, Zhao X, Xu W, Huang J, Zhong L, Sun X. The regulation of hsacirc_004413 promotes proliferation and drug resistance of gastric cancer cells by acting as a competing endogenous RNA for miR-145-5p. PeerJ 2022; 10:e12629. [PMID: 35415017 PMCID: PMC8995023 DOI: 10.7717/peerj.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Background Whether circRAN, which acts as a microRNA sponge, plays a role in 5-fluorouracil (5-Fu) resistant gastric cancer has not been reported. In this study, a 5-Fu resistant cell line with an IC50 of 16.59 µM was constructed. Methods Using comparative analysis of circRNA in the transcriptomics of resistant and sensitive strains, 31 differentially expressed circRNAs were detected, and the microRNA interacting with them was predicted. Results Hsacirc_004413 was selected for verification in drug resistant and sensitive cells. By interfering with hsacirc_004413 using antisense RNA, the sensitivity of drug resistant cells to 5-Fu was significantly promoted, and the apoptosis and necrosis of the cells were significantly increased. In sensitive cells, inhibition by inhibitors enhanced the resistance of cells to 5-Fu. We hypothesize that hsacirc_004413 makes gastric cancer cells resistant to 5-Fu mainly through adsorption of miR-145-5p.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiqi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiaoyun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiajie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xianguang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weijia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhang Q, Zheng J, Liu L. Down-regulation of lncRNA LUADT1 suppresses cervical cancer cell growth by sequestering microRNA-1207-5p. Acta Biochim Biophys Sin (Shanghai) 2022; 54:321-331. [PMID: 35538030 PMCID: PMC9828286 DOI: 10.3724/abbs.2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has proved the essential roles of long non-coding RNAs (lncRNAs) in cervical carcinoma (CC). LncRNA lung adenocarcinoma-associated transcript 1 (LUADT1) is overexpressed and plays an oncogenic role in various cancers; however, the function and clinical values of LUADT1 in CC remain unclear. In this study we found that LUADT1 is highly expressed in CC tissues and cells. Up-regulated LUADT1 is significantly correlated with the more aggressive status and poorer survival of CC patients. studies show that LUADT1 depletion suppresses CC proliferation, and leads to cell apoptosis and cell cycle arrest. Furthermore, the xenograft mouse assay demonstrates that LUADT1 knockdown remarkably suppresses tumor growth. Mechanistically, LUADT1 binds to miR-1207-5p and inhibits miR-1207-5p expression in CC cells. Septin 9 (SEPT9) is identified as a miR-1207-5p target which is negatively regulated by LUADT1. Overexpression of SEPT9 abrogates the suppressed proliferation of CC cells induced by LUADT1 knockdown. These results demonstrate that LUADT1 sponges miR-1207-5p and consequently modulates SEPT9 expression in CC. Our study suggests the possible application of LUADT1 as a prognostic and therapeutic target to inhibit CC.
Collapse
Affiliation(s)
| | | | - Lili Liu
- Correspondence address. Tel: +86-416-4197634; E-mail:
| |
Collapse
|
9
|
Non-coding RNAs-EZH2 regulatory mechanisms in cervical cancer: The current state of knowledge. Biomed Pharmacother 2021; 146:112123. [PMID: 34915417 DOI: 10.1016/j.biopha.2021.112123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Cervical cancer (CC) is among the leading causes of death in women worldwide. Both genetic and epigenetic regulators are required for the tumorigenesis and progression of CC. Non-coding RNAs (ncRNAs) are a group of RNAs that don't code for proteins yet constitute a large part of the human transcriptome, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNA), and other forms of non-coding RNAs. Deregulation of lncRNA, miRNA, and circRNA is implicated in the oncogenesis and development of cervical malignancies, acting as oncogenic drivers or tumor suppressors. Enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of Polycomb Repressive Complex 2 (PRC2), which functions to methylate histone H3 lysine 27 to silence gene transcription. Converging lines of evidence have revealed the oncogenic role played by EZH2 in cancers. EZH2 is upregulated in CC tissues with a robust correlation to the advanced stage, metastasis, and poor survival rate in patients. The elucidation of the roles of EZH2 in cancer has driven the development of therapeutic EZH2 inhibitors, which are approaching phase I or phase I/II clinical trials. Here we review the ncRNA-EZH2 regulatory pathways in CC that unify EZH2 and ncRNAs as an integrated system in the development of CC. Given the emerging findings for the role of the ncRNA-EZH2 regulatory axis in CC, it will be of great interest to develop novel therapeutic strategies based on their relationship.
Collapse
|
10
|
Chu J, Gao J, Wang J, Li L, Chen G, Dang J, Wang Z, Jin Z, Liu X. Mechanism of hydrogen on cervical cancer suppression revealed by high‑throughput RNA sequencing. Oncol Rep 2021; 46:141. [PMID: 34080660 PMCID: PMC8165587 DOI: 10.3892/or.2021.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/14/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer is considered one of the diseases with the highest mortality among women and with limited treatment options. Hydrogen (H2) inhalation has been reported to have a variety of tumor-suppressive effects, but the exact mechanism remains unclear. In the present study, HeLa cervical cancer cells and HaCaT keratinocytes treated with H2, and a HeLa xenograft mouse model subjected to H2 inhalation were established. TUNEL, Cell Counting Kit-8 and Ki67 staining assays were used to detect cell apoptosis and proliferation. Oxidative stress was determined according to the levels of reactive oxygen species, malondialdehyde and superoxide dismutase. Tumor growth was recorded every 3 days, and the excised tumors were stained with hematoxylin and eosin. High-throughput RNA sequencing and subsequent Gene Ontology (GO) enrichment analysis were performed in HeLa-treated and un-treated HeLa cells. The expression of hypoxia-inducible factor (HIF)-1α and NF-κB p65 was verified by western blotting, immunohistochemistry and reverse transcription-quantitative PCR. The results revealed an increased apoptosis rate, and reduced cell proliferation and oxidative stress in H2-treated HeLa cells but not in HaCaT cells. Similarly, decreased tumor growth and cell proliferation, and enhanced cell apoptosis were observed in H2-treated HeLa tumors. RNA sequencing and GO analysis suggest that downregulated HIF1A (HIF-1α mRNA) and RelA (NF-κB p65) levels, and reduced NF-κB signaling were associated with the antitumor effect of H2. Finally, decreased HIF-1α and NF-κB p65 expression both at the transcriptional and translational levels were observed in H2-treated HeLa cells and in HeLa-derived tumors. In conclusion, the present study reveals a novel mechanism of H2 against cervical cancer, which may serve as a potential therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Jing Chu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinghai Gao
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jing Wang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Lingling Li
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Guoqiang Chen
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jianhong Dang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Zhifeng Wang
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Zhijun Jin
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Xiaojun Liu
- Department of Obstetrics and Gynaecology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|