1
|
Kok CR, Bram Z, Thissen JB, Horseman TS, Fong KSK, Reichert-Scrivner SA, Paguirigan C, O'Connor K, Thompson K, Scheiber AE, Mabery S, Ngauy V, Uyehara CF, Be NA. The military gear microbiome: risk factors surrounding the warfighter. Appl Environ Microbiol 2024; 90:e0117623. [PMID: 38170999 PMCID: PMC10807412 DOI: 10.1128/aem.01176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Combat extremity wounds are highly susceptible to contamination from surrounding environmental material. This bioburden could be partially transferred from materials in immediate proximity to the wound, including fragments of the uniform and gear. However, the assessment of the microbial bioburden present on military gear during operational conditions of deployment or training is relatively unexplored. Opportunistic pathogens that can survive on gear represent risk factors for infection following injury, especially following combat blasts, where fibers and other materials are embedded in wounded tissue. We utilized 16S rRNA sequencing to assess the microbiome composition of different military gear types (boot, trouser, coat, and canteen) from two operational environments (training in Hawai'i and deployed in Indonesia) across time (days 0 and 14). We found that microbiome diversity, stability, and composition were dependent on gear type, training location, and sampling timepoint. At day 14, species diversity was significantly higher in Hawai'i samples compared to Indonesia samples for boot, coat, and trouser swabs. In addition, we observed the presence of potential microbial risk factors, as opportunistic pathogenic species, such as Acinetobacter, Pseudomonas, and Staphylococcus, were found to be present in all sample types and in both study sites. These study outcomes will be used to guide the design of antimicrobial materials and uniforms and for infection control efforts following combat blasts and other injuries, thereby improving treatment guidance during military training and deployment.IMPORTANCECombat extremity wounds are vulnerable to contamination from environments of proximity to the warfighter, leading to potential detrimental outcomes such as infection and delayed wound healing. Therefore, microbial surveillance of such environments is necessary to aid the advancement of military safety and preparedness through clinical diagnostics, treatment protocols, and uniform material design.
Collapse
Affiliation(s)
- Car Reen Kok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Timothy S. Horseman
- Tripler Army Medical Center, Honolulu, Hawaii, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | | - Shalini Mabery
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Viseth Ngauy
- Tripler Army Medical Center, Honolulu, Hawaii, USA
| | | | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Sah GP, Kovalick G, Chopyk J, Kuo P, Huang L, Ghatbale P, Das P, Realegeno S, Knight R, Gilbert JA, Pride DT. Characterization of SARS-CoV-2 Distribution and Microbial Succession in a Clinical Microbiology Testing Facility during the SARS-CoV-2 Pandemic. Microbiol Spectr 2023; 11:e0450922. [PMID: 36916973 PMCID: PMC10100919 DOI: 10.1128/spectrum.04509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/11/2023] [Indexed: 03/15/2023] Open
Abstract
The exchange of microbes between humans and the built environment is a dynamic process that has significant impact on health. Most studies exploring the microbiome of the built environment have been predicated on improving our understanding of pathogen emergence, persistence, and transmission. Previous studies have demonstrated that SARS-CoV-2 presence significantly correlates with the proportional abundance of specific bacteria on surfaces in the built environment. However, in these studies, SARS-CoV-2 originated from infected patients. Here, we perform a similar assessment for a clinical microbiology lab while staff were handling SARS-CoV-2 infected samples. The goal of this study was to understand the distribution and dynamics of microbial population on various surfaces within different sections of a clinical microbiology lab during a short period of 2020 Coronavirus disease (COVID-19) pandemic. We sampled floors, benches, and sinks in 3 sections (bacteriology, molecular microbiology, and COVID) of an active clinical microbiology lab over a 3-month period. Although floor samples harbored SARS-CoV-2, it was rarely identified on other surfaces, and bacterial diversity was significantly greater on floors than sinks and benches. The floors were primarily colonized by bacteria common to natural environments (e.g., soils), and benchtops harbored a greater proportion of human-associated microbes, including Staphylococcus and Streptococcus. Finally, we show that the microbial composition of these surfaces did not change over time and remained stable. Despite finding viruses on the floors, no lab-acquired infections were reported during the study period, which suggests that lab safety protocols and sanitation practices were sufficient to prevent pathogen exposures. IMPORTANCE For decades, diagnostic clinical laboratories have been an integral part of the health care systems that perform diagnostic tests on patient's specimens in bulk on a regular basis. Understanding their microbiota should assist in designing and implementing disinfection, and cleaning regime in more effective way. To our knowledge, there is a lack of information on the composition and dynamics of microbiota in the clinical laboratory environments, and, through this study, we have tried to fill that gap. This study has wider implications as understanding the makeup of microbes on various surfaces within clinical laboratories could help identify any pathogenic bacterial taxa that could have colonized these surfaces, and might act as a potential source of laboratory-acquired infections. Mapping the microbial community within these built environments may also be critical in assessing the reliability of laboratory safety and sanitation practices to lower any potential risk of exposures to health care workers.
Collapse
Affiliation(s)
- Govind Prasad Sah
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Grace Kovalick
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Lina Huang
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Promi Das
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
| | - Susan Realegeno
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
- Scripps Institution of Oceanography and Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, San Diego, California, USA
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Yu KM, Lee AM, Cho HS, Lee JW, Lim SK. Optimization of DNA extraction and sampling methods for successful forensic microbiome analyses of the skin and saliva. Int J Legal Med 2023; 137:63-77. [PMID: 36416962 DOI: 10.1007/s00414-022-02919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Microbiome studies have contributed to many fields, such as healthcare and medicine; however, these studies are relatively limited in forensics. Microbiome analyses can provide information, such as geolocation and ancestry information, when short tandem repeat (STR) profiling fails. In this study, methods for DNA extraction and sampling from the skin and saliva were optimized for the construction of a Korean Forensic Microbiome Database (KFMD). DNA yields were estimated using four DNA extraction kits, including two automated kits (Maxwell® FSC DNA IQ™ Casework Kit and PrepFiler™ Forensic DNA Extraction Kit, updated) and two manual kits (QIAamp DNA Mini Kit and QIAamp DNA Micro Kit) commonly used in forensic DNA profiling laboratories. Next-generation sequencing of the 16S rRNA V4 region was performed to analyze microbial communities in samples. The Bacterial Transport Swab with Liquid Media (NobleBio), two cotton swabs (PoongSung and Puritan), and nylon-flocked swabs (NobleBio and COPAN) were tested for DNA recovery. The PrepFiler and Maxwell kits showed the highest yields of 3.884 ng/μL and 23.767 ng/μL from the scalp and saliva, respectively. With respect to DNA recovery, nylon-flocked swabs performed better than cotton swabs. The relative abundances of taxa sorted by DNA extraction kits were similar contributions; however, with significant differences in community composition between scalp and saliva samples. Lawsonella and Veillonella were the most abundant genera in the two sample types. Thus, the Maxwell® FSC DNA IQ™ Casework Kit and nylon-flocked swab (NobleBio) were optimal for DNA extraction and collection in microbiome analyses.
Collapse
Affiliation(s)
- Kyeong-Min Yu
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - A-Mi Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Seon Cho
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Woo Lee
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
van Oorschot RAH, Meakin GE, Kokshoorn B, Goray M, Szkuta B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes (Basel) 2021; 12:genes12111766. [PMID: 34828372 PMCID: PMC8618004 DOI: 10.3390/genes12111766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the factors that may impact the transfer, persistence, prevalence and recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities and profile types being obtained given particular scenarios and circumstances, is paramount when performing, and giving guidance on, evaluations of DNA findings given activity level propositions (activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects of DNA-TPPR, with each advocating the need for further research and other actions to support the conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met, primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of these reviews and briefly exploring some of the actions taken by industry stakeholders towards addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet the challenges to continually improve the capacity of forensic experts to provide the guidance sought by the judiciary with respect to the transfer of DNA.
Collapse
Affiliation(s)
- Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
- School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| | - Georgina E. Meakin
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Centre for the Forensic Sciences, Department of Security and Crime Science, University College London, London WC1H 9EZ, UK
| | - Bas Kokshoorn
- Netherlands Forensic Institute, 2497 GB The Hague, The Netherlands;
- Faculty of Technology, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands
| | - Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Bianca Szkuta
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia;
| |
Collapse
|
5
|
Robinson JM, Pasternak Z, Mason CE, Elhaik E. Forensic Applications of Microbiomics: A Review. Front Microbiol 2021; 11:608101. [PMID: 33519756 PMCID: PMC7838326 DOI: 10.3389/fmicb.2020.608101] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
The rise of microbiomics and metagenomics has been driven by advances in genomic sequencing technology, improved microbial sampling methods, and fast-evolving approaches in bioinformatics. Humans are a host to diverse microbial communities in and on their bodies, which continuously interact with and alter the surrounding environments. Since information relating to these interactions can be extracted by analyzing human and environmental microbial profiles, they have the potential to be relevant to forensics. In this review, we analyzed over 100 papers describing forensic microbiome applications with emphasis on geolocation, personal identification, trace evidence, manner and cause of death, and inference of the postmortem interval (PMI). We found that although the field is in its infancy, utilizing microbiome and metagenome signatures has the potential to enhance the forensic toolkit. However, many of the studies suffer from limited sample sizes and model accuracies, and unrealistic environmental settings, leaving the full potential of microbiomics to forensics unexplored. It is unlikely that the information that can currently be elucidated from microbiomics can be used by law enforcement. Nonetheless, the research to overcome these challenges is ongoing, and it is foreseeable that microbiome-based evidence could contribute to forensic investigations in the future.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape, University of Sheffield, Sheffield, United Kingdom.,Healthy Urban Microbiome Initiative (HUMI), Adelaide, SA, Australia
| | - Zohar Pasternak
- Quality Assurance and Evidence Unit, Division of Identification and Forensic Science (DIFS), National Headquarters of the Israel Police, Jerusalem, Israel
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|