1
|
Andraca-Gómez G, Ordano M, Lira-Noriega A, Osorio-Olvera L, Domínguez CA, Fornoni J. Climatic and soil characteristics account for the genetic structure of the invasive cactus moth Cactoblastis cactorum, in its native range in Argentina. PeerJ 2024; 12:e16861. [PMID: 38361769 PMCID: PMC10868523 DOI: 10.7717/peerj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Background Knowledge of the physical and environmental conditions that may limit the migration of invasive species is crucial to assess the potential for expansion outside their native ranges. The cactus moth, Cactoblastis cactorum, is native to South America (Argentina, Paraguay, Uruguay and Brazil) and has been introduced and invaded the Caribbean and southern United States, among other regions. In North America there is an ongoing process of range expansion threatening cacti biodiversity of the genus Opuntia and the commercial profits of domesticated Opuntia ficus-indica. Methods To further understand what influences the distribution and genetic structure of this otherwise important threat to native and managed ecosystems, in the present study we combined ecological niche modeling and population genetic analyses to identify potential environmental barriers in the native region of Argentina. Samples were collected on the host with the wider distribution range, O. ficus-indica. Results Significant genetic structure was detected using 10 nuclear microsatellites and 24 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and wetlands were mainly located to the west of the Dry Chaco ecoregion. Niche modeling supports that this region has high environmental suitability where the upper soil temperature and humidity, soil carbon content and precipitation were the main environmental factors that explain the presence of the moth. Environmental filters such as the upper soil layer may be critical for pupal survival and consequently for the establishment of populations in new habitats, whereas the presence of available hosts is a necessary conditions for insect survival, upper soil and climatic characteristics will determine the opportunities for a successful establishment.
Collapse
Affiliation(s)
- Guadalupe Andraca-Gómez
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Mariano Ordano
- CONICET-UNT, Fundación Miguel Lillo-Instituto de Ecología Regional, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., CONAHCYT Research Fellow, Xalapa, Veracrúz, México
| | - Luis Osorio-Olvera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - César A. Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
2
|
Quiroga-Carmona M, D’Elía G. Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Sci Rep 2022; 12:22395. [PMID: 36575268 PMCID: PMC9794701 DOI: 10.1038/s41598-022-26937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Even when environmental variation over time and space is commonly considered as an important driver of population divergence, few evaluations of intraspecific genetic variation explicitly assess whether observed structure has been caused by or is correlated with landscape heterogeneity. Several phylogeographic studies have characterized the mitochondrial diversity of Abrothrix olivacea, but none has incorporated landscape genetics analyses and ecological niche modeling, leaving a gap in the understanding of the species evolutionary history. Here, these aspects were addressed based on 186 single nucleotide polymorphisms, extracted from sequences of 801 bp of Cytb gene, gathered from 416 individuals collected at 103 localities in Argentina and Chile. Employing multivariate statistical analyses (gPCA, Mantel and Partial Mantel Tests, Procrustes Analysis, and RDA), associations between genetic differences and geographic and climatic distances were evaluated. Presence data was employed to estimate the potential geographic distribution of this species during historical and contemporary climatic scenarios, and to address differences among the climatic niches of their main mitochondrial lineages. The significant influence of landscape features in structuring mitochondrial variability was evidenced at different spatial scales, as well as the role of past climatic dynamics in driving geographic range shifts, mostly associated to Quaternary glaciations. Overall, these results suggest that throughout geographic range gene flow is unevenly influenced by climatic dissimilarity and the geographic distancing, and that studied lineages do not exhibit distributional signals of climatic niche conservatism. Additionally, genetic differentiation occurred by more complex evolutionary processes than mere disruption of gene flow or drift.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.24434.350000 0004 1937 0060School of Biological Sciences, University of Nebraska, Lincoln, USA
| | - Guillermo D’Elía
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
3
|
Moraes IRR, Pardo LM, Araya-Jaime C, Wolf MR, Yasui GS, Solano Iguaran JJJ, Romagnoli Castilho GG, Alevi KCC, Castilho AL. Patterns of genome size variation in caridean shrimps: new estimates for non-gambarelloides Synalpheus species. Genome 2022; 65:459-468. [PMID: 35917258 DOI: 10.1139/gen-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome size (GS) or DNA nuclear content is considered a useful index for making inferences about evolutionary models and life history in animals, including taxonomic, biogeographical, and ecological scenarios. However, patterns of GS variation and their causes in crustaceans are still poorly understood. This study aimed to describe the GS of five Neotropical Synalpheus nongambarelloides shrimps (S. apioceros, S. minus, S. brevicarpus, S. fritzmueller, and S. scaphoceris) and compare the C-values of all Caridea Infraorder in terms of geography and phylogenetics. All animals were sampled in the coast of São Paulo State, Brazil and GS was assessed by flow cytometry analysis (FCA). The C-values ranged from 7.89 pg in S. apioceros to 12.24 pg in S. scaphoceris. Caridean shrimps had higher GS than other Decapoda crustaceans. The results reveal a tendency of obtaining larger genomes in species with direct development in Synalpheus shrimps. In addition, a tendency of positive biogeographical (latitudinal) correlation with Caridea Infraorder was also observed. This study provides remarkable and new protocol for FCA (using gating strategy for the analysis), which led to the discovery of new information regarding GS of caridean shrimps, especially for Neotropical Synalpheus, which represents the second-largest group in the Caridea Infraorder.
Collapse
Affiliation(s)
- Isabela Ribeiro Rocha Moraes
- Universidade Estadual Paulista Julio de Mesquita Filho Instituto de Biociencias Campus de Botucatu, 164767, Botucatu, Brazil;
| | | | | | - Milena Regina Wolf
- Universidade Estadual Paulista Julio de Mesquita Filho Instituto de Biociencias Campus de Botucatu, 164767, Botucatu, SP, Brazil;
| | | | | | | | | | - Antonio Leão Castilho
- Universidade Estadual Paulista Julio de Mesquita Filho Instituto de Biociencias Campus de Botucatu, 164767, Botucatu, SP, Brazil;
| |
Collapse
|
4
|
Quiroga-Carmona M, Abud C, Lessa EP, D’Elía G. The Mitochondrial Genetic Diversity of the Olive Field Mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is Latitudinally Structured Across Its Geographic Distribution. J MAMM EVOL 2022. [DOI: 10.1007/s10914-021-09582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Boric-Bargetto D, Zúñiga-Reinoso Á, Inostroza-Michel O, Rodríguez-Serrano E, González-Acuña D, Palma RE, Hernández CE. A comprehensive overview of the genetic diversity in Thylamys elegans (Didelphimorphia: Didelphidae): establishing the phylogeographic determinants. REVISTA CHILENA DE HISTORIA NATURAL 2021. [DOI: 10.1186/s40693-021-00103-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
For the genus Thylamys, the rivers have been reported as barriers to dispersal, limiting current and historical distribution of its lineages. We hypothesized that the Maipo river has affected the genetic structure of northern and southern lineages of Thylamys elegans, recovering a phylogenetic relationships with reciprocally monophyletic sister groups on opposite river banks. We evaluated the role of other rivers in the Mediterranean zone of Chile as historical and recent modulators of the biogeographic processes of this species.
Methods
We applied a phylogeographic approach, using the cytochrome-b mitochondrial gene for 93 individuals of T. elegans, from 37 localities in a latitudinal gradient between 21°25’ and 35˚56’S, encompassing a geographic area between the Atacama Desert and most of the Mediterranean Chilean zone.
Results
The phylogenetics results recovered six lineages within T. elegans: Thylamys elegans elegans, Thylamys elegans coquimbensis, the Loa lineage and three other lineages not described previously (Aconcagua, South 1 and South 2). We suggest that following rivers play a role like primary barrier: the Maipo river in the genetic differentiation of northern and southern ancestral lineages, and the Mataquito river and its tributary Teno river for the South 1 and South 2 lineages. On the other hand, the Quilimarí river preserve the genetic divergence in T. e. coquimbensis and Aconcagua lineage and the Aconcagua river in Aconcagua lineage and T. e. elegans acting like secondary barriers.
Conclusions
We concluded that the genetic diversity and biogeographic history of T. elegans was shaped by mountain glaciers, changes in river water levels during the Pleistocene glaciations and hyperaridity, promoting the differentiation and persistance of the T. elegans lineages.
Collapse
|
6
|
Quiroga-Carmona M. Exploring the effects of the quaternary glacial–interglacial cycles on the geographic distributions of tropical Andean rodents: species in the genus Aepeomys Thomas, 1898 (Thomasomyini: Sigmodontinae: Cricetidae) as a case study. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2021. [DOI: 10.1080/01650521.2021.1948654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marcial Quiroga-Carmona
- Doctorado en Ciencias, Mención Ecología y Evolución, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja S/n, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
7
|
Taxonomic revision of the populations assigned to Octodon degus (Hystricomorpha: Octodontidae): With the designation of a neotype for Sciurus degus G. I. Molina, 1782 and the description of a new subspecies. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Valdez L, D’Elía G. Genetic Diversity and Demographic History of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front Genet 2021; 12:642504. [PMID: 33841502 PMCID: PMC8024643 DOI: 10.3389/fgene.2021.642504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic information on species can inform decision making regarding conservation of biodiversity since the response of organisms to changing environments depend, in part, on their genetic makeup. Territories of central-southern Chile and Argentina have undergone a varying degree of impact during the Quaternary, where the response of local fauna and flora was rather species-specific. Here, we focus on the sigmodontine rodent Abrothrix hirta, distributed from 35° S in Chile and Argentina to northern Tierra del Fuego. Based on 119,226 transcriptome-derived SNP loci from 46 individuals of A. hirta, we described the geographic distribution of the genetic diversity of this species using a maximum likelihood tree, principal component and admixture analyses. We also addressed the demographic history of the main intraspecific lineages of A. hirta using GADMA. We found that A. hirta exhibited four allopatric intraspecific lineages. Three main genetic groups were identified by a Principal Component Analysis and by Ancestry analysis. The demographic history of A. hirta was characterized by recent population stability for populations at the northernmost part of the range, while southern populations experienced a recent population expansion.
Collapse
Affiliation(s)
- Lourdes Valdez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|