1
|
Guo T, Zhao S, Zhu W, Zhou H, Cheng H. Research progress on the biological basis of Traditional Chinese Medicine syndromes of gastrointestinal cancers. Heliyon 2023; 9:e20653. [PMID: 38027682 PMCID: PMC10643116 DOI: 10.1016/j.heliyon.2023.e20653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal cancers account for 11.6 % of all cancers, and are the second most frequently diagnosed type of cancer worldwide. Traditional Chinese medicine (TCM), together with Western medicine or alone, has unique advantages for the prevention and treatment of cancers, including gastrointestinal cancers. Syndrome differentiation and treatment are basic characteristics of the theoretical system of TCM. TCM syndromes are the result of the differentiation of the syndrome and the basis of treatment. Genomics, transcriptomics, proteomics, metabolomics, intestinal microbiota, and serology, generated around the central law, are used to study the biological basis of TCM syndromes in gastrointestinal cancers. This review summarizes current research on the biological basis of TCM syndrome in gastrointestinal cancers and provides useful references for future research on TCM syndrome in gastrointestinal cancers.
Collapse
Affiliation(s)
- Tianhao Guo
- Institute of Health and Regimen, Jiangsu Open University, Nanjing, Jiangsu 210036, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuoqi Zhao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenjian Zhu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongguang Zhou
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu 210023, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Departments of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Jin D, Huang K, Xu M, Hua H, Ye F, Yan J, Zhang G, Wang Y. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes 2022; 14:2120744. [PMID: 36067404 PMCID: PMC9467587 DOI: 10.1080/19490976.2022.2120744] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal metaplasia (IM) is the inevitable precancerous stage to develop intestinal-type gastric cancer (GC). Deoxycholic acid (DCA) is the main bile acid (BA) component of duodenogastric reflux and has shown an increased concentration during the transition from chronic gastritis to IM associated with continued STAT3 activation. However, the mechanisms underlying how DCA facilitates IM in the gastric epithelium need exploration. We evaluated IM and bile reflux in corpus tissues from 161 subjects undergoing GC screening. Cell survival and proliferation, proinflammatory cytokine expression and TGR5/STAT3/KLF5 axis activity were measured in normal human gastric cells, cancer cells, and organoid lines derived from C57BL/6, FVB/N and insulin-gastrin (INS-GAS) mice treated with DCA. The effects of DCA on IM development were determined in INS-GAS mice with long-term DCA supplementation, after which the gastric bacterial and BA metabolic profiles were measured by 16S rRNA gene sequencing and LC-MS. We revealed a BA-triggered TGR5/STAT3/KLF5 pathway in human gastric IM tissues. In gastric epithelial cells, DCA promoted proliferation and apoptotic resistance, upregulated proinflammatory cytokines and IM markers, and facilitated STAT3 phosphorylation, nuclear accumulation and DNA binding to the KLF5 promoter. DCA triggered STAT3 signaling and the downstream IM marker KLF5 in mouse gastric organoids in vitro and in vivo. In INS-GAS mice, DCA promoted the accumulation of serum total BAs and accelerated the stepwise development of gastric IM and dysplasia. DCA induced gastric environmental alterations involving abnormal BA metabolism and microbial dysbiosis, in which the Gemmobacter and Lactobacillus genera were specifically enriched. Lactobacillus genus enrichment was positively correlated with increased levels of GCA, CA, T-α-MCA, TCA and β-MCA in DCA-administrated INS-GAS mice. DCA promotes nuclear STAT3 phosphorylation, which mediates KLF5 upregulation associated with gastric inflammation and IM development. DCA disturbs the gastric microbiome and BA metabolism homeostasis during IM induction.
Collapse
Affiliation(s)
- Duochen Jin
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina,First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Keting Huang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina,First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina,First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Hongjin Hua
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Ye
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
| | - Jin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
| | - Guoxin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina,First Clinical Medical College, Nanjing Medical University, Nanjing, China,CONTACT Guoxin Zhang
| | - Yun Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina,Yun Wang Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| |
Collapse
|
3
|
Hereditary Diffuse Gastric Cancer: Molecular Genetics, Biological Mechanisms and Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23147821. [PMID: 35887173 PMCID: PMC9319245 DOI: 10.3390/ijms23147821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hereditary diffuse gastric cancer is an autosomal dominant syndrome characterized by a high prevalence of diffuse gastric cancer and lobular breast cancer. It is caused by inactivating mutations in the tumor suppressor gene CDH1. Genetic testing technologies have become more efficient over the years, also enabling the discovery of other susceptibility genes for gastric cancer, such as CTNNA1 among the most important genes. The diagnosis of pathogenic variant carriers with an increased risk of developing gastric cancer is a selection process involving a multidisciplinary team. To achieve optimal long-term results, it requires shared decision-making in risk management. In this review, we present a synopsis of the molecular changes and current therapeutic approaches in HDGC based on the current literature.
Collapse
|