1
|
Garcia DR, Vishwanath N, Minnah A, Allu S, Whitaker CD, Stone BK, Berns EM, Spake CSL, Dockery DM, Barrett CC, Mette M, Connolly W, Clippert D, Antoci V, Born CT. Silver Carboxylate-Eluting Titanium-Dioxide Polydimethylsiloxane Coating Inhibits Multi-Drug-Resistant Acinetobacterium baumannii and Vancomycin-Resistant Enterococcus faecalis Adherence and Proliferation on Orthopedic Trauma Fixation and Spinal Fusion Materials. Surg Infect (Larchmt) 2022; 23:924-932. [PMID: 36413347 DOI: 10.1089/sur.2022.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Vancomycin-resistant Enterococcus faecalis and multi-drug-resistant (MDR) Acinetobacter baumannii are rising contributors to spinal fusion and fracture-associated infections (FAI), respectively. These MDR bacteria can form protective biofilms, complicating traditional antibiotic treatment. This study explores the effects of the antibiotic-independent antimicrobial silver carboxylate (AgCar)-doped coating on the adherence sand proliferation of these pathogens on orthopedic implant materials utilized in spinal fusion and orthopedic trauma fixation. Methods: Multi-drug-resistant Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis were inoculated on five common implant materials: cobalt chromium, titanium, titanium alloy, polyether ether ketone, and stainless steel. Dose response curves were generated to assess antimicrobial potency. Scanning electron microscopy and confocal laser scanning microscopy were utilized to characterize and quantify growth and adherence on each material. Results: The optimal AgCar concentration was a 95% titanium dioxide (TiO2)-5% polydimethylsiloxane (PDMS) matrix combined with 10 × silver carboxylate, which inhibited bacterial proliferation by 89.40% (p = 0.001) for MDR Acinetobacter baumannii and 84.02% (p = 0.001) for vancomycin-resistant Enterococcus faecalis compared with uncoated implants. A 95% TiO2-5% PDMS matrix combined with 10 × AgCar was equally effective at inhibiting bacterial proliferation across all implant materials for MDR Acinetobacter baumannii (p = 0.19) and vancomycin-resistant Enterococcus faecalis (p = 0.07). A 95% TiO2-5% PDMS matrix with 10 × AgCar is effective at decreasing bacterial adherence of both MDR Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis on implant materials. Conclusions: Application of this antibiotic-independent coating for surgery in which these implant materials might be used may prevent adherence, biofilm formation, spinal infections, and FAI by MDR Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis.
Collapse
Affiliation(s)
- Dioscaris R Garcia
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Brown University, Providence, Rhode Island, USA.,Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Neel Vishwanath
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | | | - Sai Allu
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Colin D Whitaker
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Benjamin K Stone
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Ellis M Berns
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Carole S L Spake
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Dominique M Dockery
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Caitlin C Barrett
- Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Brown University, Providence, Rhode Island, USA
| | - Makena Mette
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - William Connolly
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Drew Clippert
- Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Brown University, Providence, Rhode Island, USA
| | - Valentin Antoci
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Brown University, Providence, Rhode Island, USA.,Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Christopher T Born
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Weiss Center for Orthopaedic Trauma Research, Rhode Island Hospital, Providence, Rhode Island, USA.,Brown University, Providence, Rhode Island, USA.,Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Prosthetic Knee Joint Infection Due to Candida lusitaniae: A Diagnostic and Therapeutic Odyssey: A Case Study. Diagnostics (Basel) 2022; 12:diagnostics12112640. [DOI: 10.3390/diagnostics12112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Prosthetic joint infections (PJIs) caused by fungi, although relatively rare, represent a major surgery-related complication. An extremely rare fungal PJI, following revised total knee replacement (TKR) caused by Candida lusitaniae, is reported, and a meticulous review of similar cases is provided. A 74-year-old female, who underwent primary total knee arthroplasty 10 years ago and a revision surgery three weeks ago, presented with signs and symptoms of PJI. C. lusitaniae was eventually isolated from the periprosthetic tissue using the MALDI-TOF VitekMS–bioMérieux technique. Multiple strategies for managing this fungal PJI were performed, and finally, the patient was treated successfully with an intramedullary arthrodesis system and proper antifungal treatment, including fluconazole. A multidisciplinary approach is essential for the diagnosis and treatment of such severe infections. In persistent cases and in cases where revision surgery is extremely difficult to perform, arthrodesis seems to be an effective solution for the elimination of the infection. The efficacy of the therapeutic management of fungal PJIs remains unclear. Therefore, more research should be reported, focusing on proper treatment so that the optimal strategy in treating these severe infections may be established.
Collapse
|
3
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|