1
|
Bonstingl L, Zinnegger M, Sallinger K, Pankratz K, Müller CT, Pritz E, Odar C, Skofler C, Ulz C, Oberauner-Wappis L, Borrás-Cherrier A, Somođi V, Heitzer E, Kroneis T, Bauernhofer T, El-Heliebi A. Advanced single-cell and spatial analysis with high-multiplex characterization of circulating tumor cells and tumor tissue in prostate cancer: Unveiling resistance mechanisms with the CoDuCo in situ assay. Biomark Res 2024; 12:140. [PMID: 39550585 PMCID: PMC11568690 DOI: 10.1186/s40364-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a highly heterogeneous and dynamic disease and practicable tools for patient stratification and resistance monitoring are urgently needed. Liquid biopsy analysis of circulating tumor cells (CTCs) and circulating tumor DNA are promising, however, comprehensive testing is essential due to diverse mechanisms of resistance. Previously, we demonstrated the utility of mRNA-based in situ padlock probe hybridization for characterizing CTCs. METHODS We have developed a novel combinatorial dual-color (CoDuCo) assay for in situ mRNA detection, with enhanced multiplexing capacity, enabling the simultaneous analysis of up to 15 distinct markers. This approach was applied to CTCs, corresponding tumor tissue, cancer cell lines, and peripheral blood mononuclear cells for single-cell and spatial gene expression analysis. Using supervised machine learning, we trained a random forest classifier to identify CTCs. Image analysis and visualization of results was performed using open-source Python libraries, CellProfiler, and TissUUmaps. RESULTS Our study presents data from multiple prostate cancer patients, demonstrating the CoDuCo assay's ability to visualize diverse resistance mechanisms, such as neuroendocrine differentiation markers (SYP, CHGA, NCAM1) and AR-V7 expression. In addition, druggable targets and predictive markers (PSMA, DLL3, SLFN11) were detected in CTCs and formalin-fixed, paraffin-embedded tissue. The machine learning-based CTC classification achieved high performance, with a recall of 0.76 and a specificity of 0.99. CONCLUSIONS The combination of high multiplex capacity and microscopy-based single-cell analysis is a unique and powerful feature of the CoDuCo in situ assay. This synergy enables the simultaneous identification and characterization of CTCs with epithelial, epithelial-mesenchymal, and neuroendocrine phenotypes, the detection of CTC clusters, the visualization of CTC heterogeneity, as well as the spatial investigation of tumor tissue. This assay holds significant potential as a tool for monitoring dynamic molecular changes associated with drug response and resistance in prostate cancer.
Collapse
Affiliation(s)
- Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany
| | - Margret Zinnegger
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Karin Pankratz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christin-Therese Müller
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Corinna Odar
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christina Skofler
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Christine Ulz
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Lisa Oberauner-Wappis
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Anatol Borrás-Cherrier
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Višnja Somođi
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
- University Comprehensive Cancer Center (CCC) Graz, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria.
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria.
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Hussain M, Fizazi K, Shore ND, Heidegger I, Smith MR, Tombal B, Saad F. Metastatic Hormone-Sensitive Prostate Cancer and Combination Treatment Outcomes: A Review. JAMA Oncol 2024; 10:807-820. [PMID: 38722620 DOI: 10.1001/jamaoncol.2024.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Importance Metastatic hormone-sensitive prostate cancer is currently an incurable disease. Despite a high response rate to androgen-deprivation therapy, most cases progress to castration-resistant disease, the terminal phase. This review provides a summary of the most recent evidence for current and emerging management strategies, including treatment intensification with combinations of therapies. It also provides recommendations on applying the evidence in clinical practice to encourage appropriate treatment to improve survival outcomes among patients with metastatic hormone-sensitive prostate cancer. Observations Androgen-deprivation therapy is the backbone of treatment for metastatic hormone-sensitive prostate cancer; however, it is insufficient alone to provide sustained disease control and long-term survival. Addition of an androgen receptor pathway inhibitor and/or docetaxel significantly improves survival, as demonstrated by several international phase 3 randomized clinical trials. Triplet therapy composed of androgen-deprivation therapy plus an androgen receptor pathway inhibitor plus docetaxel has been shown to improve overall survival over androgen-deprivation therapy plus docetaxel. In the ARASENS trial (darolutamide), the hazard ratios (HRs) were 0.68 (95% CI, 0.57-0.80) in the overall population; 0.71 (95% CI, 0.59-0.85) and 0.61 (95% CI, 0.35-1.05) in patients with de novo and recurrent disease, respectively; 0.69 (95% CI, 0.57-0.82) and 0.72 (95% CI, 0.41-1.13) in patients with high-volume and low-volume disease, respectively; and 0.71 (95% CI, 0.58-0.86) and 0.62 (95% CI, 0.42-0.90) in patients with high-risk and low-risk disease, respectively. In the PEACE-1 trial (abiraterone acetate + prednisone), the HRs were 0.75 (95% CI, 0.59-0.95; all de novo) in the overall population and 0.72 (95% CI, 0.55-0.95) and immature in the high-volume and low-volume subgroups, respectively. In the ENZAMET trial (enzalutamide), the HRs were 0.82 (95% CI, 0.63-1.06) in the overall population; 0.73 (95% CI, 0.55-0.99) and 1.10 (95% CI, 0.65-1.86) in the de novo and recurrent subgroups, respectively; and 0.87 (95% CI, 0.66-1.17) and 0.61 (95% CI, 0.33-1.10) in the high-volume and low-volume subgroups. Combination regimens are generally well tolerated, with adverse effects dependent on the profiles of the component drugs. Conclusions and relevance The findings of this review show compelling evidence from phase 3 randomized clinical trials in favor of initiating triplet combination therapy for patients with metastatic hormone-sensitive prostate cancer for the best overall survival. Patients who are eligible for chemotherapy should be offered androgen-deprivation therapy plus an androgen receptor pathway inhibitor plus docetaxel, particularly patients with high-volume, high-risk, or de novo metastatic disease.
Collapse
Affiliation(s)
- Maha Hussain
- Division of Hematology-Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Neal D Shore
- Carolina Urologic Research Center and GenesisCare, Myrtle Beach, South Carolina
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Matthew R Smith
- Genitourinary Oncology Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston
| | - Bertrand Tombal
- Division of Urology, Institut de Recherche Clinique, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Fred Saad
- Division of Urology, University of Montreal Hospital Center, Montréal, Québec, Canada
| |
Collapse
|
3
|
Masud N, Aldahish A, Iczkowski KA, Kale A, Shah GV. Zinc finger protein‑like 1 is a novel neuroendocrine biomarker for prostate cancer. Int J Oncol 2023; 62:38. [PMID: 36799165 PMCID: PMC9937688 DOI: 10.3892/ijo.2023.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate‑derived calcitonin (CT) and its receptor induce tumorigenicity and increase metastatic potential of prostate cancer (PC). CT‑inducible genes in human prostate were identified by subtraction hybridization. Among these genes, zinc finger protein like 1 (ZFPL1) protein was interesting since it was abundantly expressed in malignant prostates but was almost absent in benign prostates. ZFPL1 expression was upregulated by CT and androgens, and ZFPL1 protein was secreted by prostate tumor cells through exosomal secretion. Serum levels of ZFPL1 in cancer patients were at least 4‑fold higher than those in the sera of cancer‑free individuals. Cell biology of ZFPL1 suggests its localization in Golgi bodies and exosomes, and its colocalization with chromogranin A and CD44. These results suggested that ZFPL1 is secreted by tumor cells of neuroendocrine (NE)/stem cell phenotype. The knockdown of endogenous ZFPL1 in (PC) cells led to a remarkable decrease in cell proliferation, and invasion while increasing their apoptosis. As expected, the overexpression of ZFPL1 in prostate cells had an opposite effect on these functions. The knockdown of ZFPL1 in PC cells also decreased Akt phosphorylation, suggesting the actions of ZFPL1 may be mediated through the PI3K‑Akt pathway. Moreover, the present results revealed that ZFPL1 is released by tumors cells of NE or androgen‑independent phenotype and its serum levels are significantly higher in cancer patients, suggesting that it may serve as a blood‑based non‑invasive biomarker of aggressive PC.
Collapse
Affiliation(s)
- Neshat Masud
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Afaf Aldahish
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kenneth A. Iczkowski
- Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ajay Kale
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Girish V. Shah
- Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| |
Collapse
|
4
|
Sawazaki H, Asano A, Kitamura Y, Katsuta J, Ito Y. Androgen receptor-neuroendocrine double-negative tumor with squamous differentiation arising from treatment-refractory metastatic castration-resistant prostate cancer. IJU Case Rep 2021; 4:417-420. [PMID: 34755072 PMCID: PMC8560456 DOI: 10.1002/iju5.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Treatment-refractory metastatic castration-resistant prostate cancer is a heterogeneous disease classified into androgen receptor-high prostate cancer, androgen receptor-low prostate cancer, amphicrine prostate cancer co-expressing androgen receptor and neuroendocrine genes, double-negative prostate cancer lacking androgen receptor and neuroendocrine gene expression, and small cell or neuroendocrine prostate cancer without androgen receptor activity. Double-negative tumors can convert to the squamous phenotype. CASE PRESENTATION A 62-year-old man was newly diagnosed with prostate cancer (serum prostate-specific antigen 2613 ng/mL, Gleason score 4 + 5 = 9, cT3aN1M1b) that progressed to castration resistance 4 months after starting abiraterone with androgen deprivation therapy. After enzalutamide and docetaxel failed, a right ilium metastasis newly emerged. Needle biopsy confirmed a metastatic tumor with squamous differentiation that was CK5/6-positive and chromogranin A-, synaptophysin-, and androgen receptor-negative. CONCLUSION We encountered a case of double-negative prostate cancer with squamous differentiation identified by needle biopsy of a right ilium metastasis after abiraterone, enzalutamide, and docetaxel failure.
Collapse
Affiliation(s)
| | - Atsushi Asano
- Department of UrologyNational Defense Medical CollegeTokorozawaJapan
| | - Yosuke Kitamura
- Department of UrologyTama‐Hokubu Medical CenterHigashimurayamaJapan
| | - Jumpei Katsuta
- Department of UrologyNational Defense Medical CollegeTokorozawaJapan
| | - Yuji Ito
- Department of PathologyTama‐Hokubu Medical CenterHigashimurayamaJapan
| |
Collapse
|
5
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|