1
|
Khanmohammadi S, Fallahtafti P, Habibzadeh A, Ezzatollahi Tanha A, Alamdari AA, Fallahtafti P, Shafi Kuchay M. Effectiveness of body roundness index for the prediction of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2025; 24:117. [PMID: 40148946 PMCID: PMC11948846 DOI: 10.1186/s12944-025-02544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Several anthropometric indices, such as body mass index and waist circumference, have been used as clinical screening tools for the prediction of nonalcoholic fatty liver disease (NAFLD). To further refine these clinical tools for NAFLD, the body roundness index (BRI) has recently been evaluated. In this systematic review and meta-analysis, the objective was to evaluate the relationship and predictive capability of the BRI in identifying NAFLD. METHODS A comprehensive search was conducted in PubMed, Embase, Web of Science, and Scopus up to December 31, 2024. Eligibility criteria included observational studies on adults (≥ 18 years old) with measured BRI and its association with NAFLD. The Joanna Briggs Institute tool was used for risk of bias assessment. Meta-analyses used random-effects models to pool data on mean difference, odds ratio, sensitivity, specificity, and the area under the curve (AUC), with heterogeneity and publication bias assessed. RESULTS Ten studies involving 59,466 participants were included. The pooled mean difference in BRI between the NAFLD and non-NAFLD groups was 1.73 (95% confidence interval [CI]: 1.31-2.15). The pooled sensitivity and specificity of BRI for diagnosing NAFLD were 0.806 and 0.692, respectively. The pooled AUC for BRI was 0.803 (95% CI: 0.775-0.830), indicating good diagnostic accuracy. Unlike subgroup analysis by country, subgroup analysis by sex showed no significant differences. Higher BRI values were associated with increased odds of NAFLD (pooled OR = 2.87, 95% CI: 1.39; 5.96). Studies provided mixed results on the predictive ability of BRI compared to other indices like body mass index, mostly favoring BRI over conventional indices. CONCLUSION BRI demonstrates a good diagnostic performance for NAFLD, suggesting it may be a valuable clinical tool for NAFLD assessment. Further research is necessary to validate these findings and strengthen the evidence base.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Amir Ali Alamdari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Fallahtafti
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shafi Kuchay
- Divison of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, Haryana, 122001, India
| |
Collapse
|
2
|
Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci 2023; 24:ijms24098445. [PMID: 37176153 PMCID: PMC10178980 DOI: 10.3390/ijms24098445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions worldwide. Moreover, the prevalence of this liver disease is expected to increase rapidly in the near future, aligning with the rise in obesity and the aging of the population. The pathogenesis of NAFLD is considered to be complex and to include the interaction between genetic, metabolic, inflammatory, and environmental factors. It is now well documented that NAFLD is linked to the other conditions common to insulin resistance, such as abnormal lipid levels, metabolic syndrome, and type 2 diabetes mellitus. Additionally, it is considered that the insulin resistance may be one of the main mechanisms determining the disturbances in both bone tissue metabolism and skeletal muscles quality and functions in patients with NAFLD. To date, the association between NAFLD and osteoporosis has been described in several studies, though it worth noting that most of them included postmenopausal women or elderly patients and originated from Asia. However, taking into account the health and economic burdens of NAFLD, and the increasing prevalence of obesity in children and adolescents worldwide, further investigation of the relationship between osteopenia, osteoporosis and sarcopenia in NAFLD, including in young and middle-aged patients, is of great importance. In addition, this will help to justify active screening and surveillance of osteopenia and osteoporosis in patients with NAFLD. In this review, we will discuss various pathophysiological mechanisms and possible biologically active molecules that may interplay between NAFLD and bone tissue metabolism.
Collapse
Affiliation(s)
- Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu Elkina
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anton R Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
3
|
Trifan A, Stafie R, Rotaru A, Stratina E, Zenovia S, Nastasa R, Huiban L, Cuciureanu T, Muzica C, Chiriac S, Girleanu I, Singeap AM, Sfarti C, Cojocariu C, Petrea O, Stanciu C. Screening for Liver Steatosis and Fibrosis in Patients with Inflammatory Bowel Disease Using Vibration Controlled Transient Elastography with Controlled Attenuation Parameter. J Clin Med 2022; 11:jcm11195959. [PMID: 36233826 PMCID: PMC9573563 DOI: 10.3390/jcm11195959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) are frequently associated with extraintestinal manifestations, hepatic injury being of concern in these patients. Current literature reports an increased prevalence of liver steatosis and fibrosis in subjects with IBD and the pathophysiology is yet to be completely understood. The aim of this study was to assess the prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with IBD, as well as to determine the factors that connect these two disorders. METHODS From September 2021 to June 2022, 82 consecutive IBD patients were enrolled from a tertiary care center hospital in Iasi. Vibration-Controlled Transient Elastography with Controlled Attenuation Parameter (CAP) was used to assess the presence of NAFLD, with a cut-off score for CAP of 248 dB/m. Significant liver fibrosis was considered at a cut-off for liver stiffness measurements (LSM) of 7.2 kPa. RESULTS In total, 82 IBD patients (54.8% men, mean age of 49 ± 13 years) were included, 38 (46.3%) of them being diagnosed with NAFLD, with a mean CAP score of 286 ± 35.4 vs. 203 ± 29.7 in patients with IBD only. Age (β = 0.357, p = 0.021), body mass index (BMI) (β = 0.185, p = 0.048), disease duration (β = 0.297, p = 0.041), C-reactive protein (β = 0.321, p = 0.013), fasting plasma glucose (β = 0.269, p = 0.038), and triglycerides (β = 0.273, p = 0.023) were strongly associated with the presence of liver steatosis. The multivariate analysis showed that older age, BMI, and disease duration were strongly associated with significant liver fibrosis in our group. CONCLUSIONS NAFLD is a multifaced pathology with growing prevalence among IBD patients. Additional studies are needed to completely understand this problem and to create a solid evidence-based framework for more effective preventative and intervention strategies.
Collapse
Affiliation(s)
- Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Remus Stafie
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Correspondence: (R.S.); (A.R.)
| | - Adrian Rotaru
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
- Correspondence: (R.S.); (A.R.)
| | - Ermina Stratina
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Sebastian Zenovia
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Robert Nastasa
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Tudor Cuciureanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Oana Petrea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 70015 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
4
|
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022; 12:993437. [PMID: 36212470 PMCID: PMC9539266 DOI: 10.3389/fonc.2022.993437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most of the primary hepatocellular carcinoma (HCC) develops from Viral Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic Steatohepatitis. Herein, T cells play crucial roles combined with chronic inflammation and chronic viral infection. However, T cells are gradually exhausted under chronic antigenic stimulation, which leads to T cell exhaustion in the tumor microenvironment, and the exhaustion is associated with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a crucial role in altering T cells’ metabolism modes to achieve desirable immunological responses, wherein mitochondria maintain quality control (MQC) and promote metabolism regulation in the microenvironment. Although immune checkpoint inhibitors have been widely used in clinical practice, there are some limitations in the therapeutic effect, thus combining immune checkpoint inhibitors with targeting mitochondrial biogenesis may enhance cellular metabolic adaptation and reverse the exhausted state. At present, several studies on mitochondrial quality control in HCC have been reported, however, there are gaps in the regulation of immune cell function by mitochondrial metabolism, particularly the modulating of T cell immune function. Hence, this review summarizes and discusses existing studies on the effects of MQC on T cell populations in liver diseases induced by HCC, it would be clued by mitochondrial quality control events.
Collapse
Affiliation(s)
- Yixue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| | - Xue Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| |
Collapse
|
5
|
Coleman MJ, Espino LM, Lebensohn H, Zimkute MV, Yaghooti N, Ling CL, Gross JM, Listwan N, Cano S, Garcia V, Lovato DM, Tigert SL, Jones DR, Gullapalli RR, Rakov NE, Torrazza Perez EG, Castillo EF. Individuals with Metabolic Syndrome Show Altered Fecal Lipidomic Profiles with No Signs of Intestinal Inflammation or Increased Intestinal Permeability. Metabolites 2022; 12:431. [PMID: 35629938 PMCID: PMC9143200 DOI: 10.3390/metabo12050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
Collapse
Affiliation(s)
- Mia J. Coleman
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Luis M. Espino
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Hernan Lebensohn
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Marija V. Zimkute
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Negar Yaghooti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Christina L. Ling
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Jessica M. Gross
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Natalia Listwan
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Sandra Cano
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Vanessa Garcia
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Debbie M. Lovato
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Susan L. Tigert
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA;
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Neal E. Rakov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Euriko G. Torrazza Perez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Eliseo F. Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| |
Collapse
|