1
|
Boraczyński M, Balcerek T, Rożkiewicz N, Pabiszczak M, Harasymczuk M, Sławska A, Lutomski P. Pulmonary function in swimmers exposed to disinfection by-products: a narrative review. Front Physiol 2025; 15:1473302. [PMID: 39835195 PMCID: PMC11743734 DOI: 10.3389/fphys.2024.1473302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers. In addition, chlorine-based disinfectants (CBDs) are commonly used in indoor pools due to their effectiveness and lower relative cost. Many of these substances have carcinogenic and genotoxic properties, and exposure to DBPs have been linked to adverse respiratory effects. The association between long-term exposure to a chlorinated swimming pool and elevated serum sIgE levels suggests a link between allergens, chlorine exposure and the development of various pulmonary dysfunctions. Thus, the combination of intense and repeated physical endurance training over extended periods, along with suboptimal environmental conditions, may contribute to the development of rhinitis, asthma and bronchial hyperresponsiveness in athletes. While occasional or low-level exposure to chlorine might not be harmful, regular swimmers, especially those at competitive levels, are at a higher risk of developing respiratory disorders. Because these potential risks of exposure to CBDs must be balanced against the benefits of swimming and the risk of microbial infections in pools, we recommend better pool management and regular health checks for swimmers. Fortunately, the reduction of bronchial symptoms in swimmers who reduce training volume and intensity suggests that the negative effects on pulmonary function may be reversible. For these reasons, it is crucial to develop effective respiratory protection strategies, including medical interventions and modifications to the pool environment. Practical steps such as reducing chlorine use, ensuring proper hygiene before swimming and using swim caps can minimise risks. Research should also explore safer alternatives to CBDs, such as ozonation, and improved ventilation to reduce air pollutants.
Collapse
Affiliation(s)
- Michał Boraczyński
- Department of Physiotherapy, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Balcerek
- Department of Gynecology Obstetrics and Gynecologic Oncology, Gynecological Obstetric Clinical Hospital of Poznan University of Medical Sciences, Poznań, Poland
| | - Nikola Rożkiewicz
- Medica Pro Familia, Family Medicine Clinic, Non-public Healthcare Center, Poznań, Poland
| | - Monika Pabiszczak
- MALTA Family Medicine Clinic, Non-public Healthcare Center, Poznań, Poland
| | - Michał Harasymczuk
- Department of Traumatology, Orthopedics and Hand Surgery, Poznan University of Medical Sciences, Poznań, Poland
| | - Aneta Sławska
- Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland
| | - Przemysław Lutomski
- Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland
| |
Collapse
|
2
|
Pigakis KM, Stavrou VT, Kontopodi AK, Pantazopoulos I, Daniil Z, Gourgoulianis K. Impact of Isolated Exercise-Induced Small Airway Dysfunction on Exercise Performance in Professional Male Cyclists. Sports (Basel) 2024; 12:112. [PMID: 38668580 PMCID: PMC11054898 DOI: 10.3390/sports12040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Professional cycling puts significant demands on the respiratory system. Exercise-induced bronchoconstriction (EIB) is a common problem in professional athletes. Small airways may be affected in isolation or in combination with a reduction in forced expiratory volume at the first second (FEV1). This study aimed to investigate isolated exercise-induced small airway dysfunction (SAD) in professional cyclists and assess the impact of this phenomenon on exercise capacity in this population. MATERIALS AND METHODS This research was conducted on professional cyclists with no history of asthma or atopy. Anthropometric characteristics were recorded, the training age was determined, and spirometry and specific markers, such as fractional exhaled nitric oxide (FeNO) and immunoglobulin E (IgE), were measured for all participants. All of the cyclists underwent cardiopulmonary exercise testing (CPET) followed by spirometry. RESULTS Compared with the controls, 1-FEV3/FVC (the fraction of the FVC that was not expired during the first 3 s of the FVC) was greater in athletes with EIB, but also in those with isolated exercise-induced SAD. The exercise capacity was lower in cyclists with isolated exercise-induced SAD than in the controls, but was similar to that in cyclists with EIB. This phenomenon appeared to be associated with a worse ventilatory reserve (VE/MVV%). CONCLUSIONS According to our data, it appears that professional cyclists may experience no beneficial impacts on their respiratory system. Strenuous endurance exercise can induce airway injury, which is followed by a restorative process. The repeated cycle of injury and repair can trigger the release of pro-inflammatory mediators, the disruption of the airway epithelial barrier, and plasma exudation, which gradually give rise to airway hyper-responsiveness, exercise-induced bronchoconstriction, intrabronchial inflammation, peribronchial fibrosis, and respiratory symptoms. The small airways may be affected in isolation or in combination with a reduction in FEV1. Cyclists with isolated exercise-induced SAD had lower exercise capacity than those in the control group.
Collapse
Affiliation(s)
- Konstantinos M. Pigakis
- Department of Respiratory & Critical Care Medicine, Creta Interclinic, 71304 Heraklion, Greece
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
| | - Vasileios T. Stavrou
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
| | - Aggeliki K. Kontopodi
- Department of Respiratory & Critical Care Medicine, Creta Interclinic, 71304 Heraklion, Greece
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Zoe Daniil
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.T.S.); (Z.D.); (K.G.)
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
3
|
Klain A, Giovannini M, Pecoraro L, Barni S, Mori F, Liotti L, Mastrorilli C, Saretta F, Castagnoli R, Arasi S, Caminiti L, Gelsomino M, Indolfi C, Del Giudice MM, Novembre E. Exercise-induced bronchoconstriction, allergy and sports in children. Ital J Pediatr 2024; 50:47. [PMID: 38475842 DOI: 10.1186/s13052-024-01594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is characterized by the narrowing of airways during or after physical activity, leading to symptoms such as wheezing, coughing, and shortness of breath. Distinguishing between EIB and exercise-induced asthma (EIA) is essential, given their divergent therapeutic and prognostic considerations. EIB has been increasingly recognized as a significant concern in pediatric athletes. Moreover, studies indicate a noteworthy prevalence of EIB in children with atopic predispositions, unveiling a potential link between allergic sensitivities and exercise-induced respiratory symptoms, underpinned by an inflammatory reaction caused by mechanical, environmental, and genetic factors. Holistic management of EIB in children necessitates a correct diagnosis and a combination of pharmacological and non-pharmacological interventions. This review delves into the latest evidence concerning EIB in the pediatric population, exploring its associations with atopy and sports, and emphasizing the appropriate diagnostic and therapeutic approaches by highlighting various clinical scenarios.
Collapse
Affiliation(s)
- Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
- Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126, Verona, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Lucia Liotti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children's Hospital, 60123, Ancona, Italy
| | - Carla Mastrorilli
- Pediatric and Emergency Department, Pediatric Hospital Giovanni XXIII, AOU Policlinic of Bari, 70126, Bari, Italy
| | - Francesca Saretta
- Pediatric Department, Latisana-Palmanova Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Caminiti
- Allergy Unit, Department of Pediatrics, AOU Policlinico Gaetano Martino, 98124, Messina, Italy
| | - Mariannita Gelsomino
- Department of Life Sciences and Public Health, Pediatric Allergy Unit, University Foundation Policlinico Gemelli IRCCS, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Elio Novembre
- Allergy Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| |
Collapse
|