1
|
Ichimiya Y, Chong PF, Sonoda Y, Tocan V, Watanabe M, Torisu H, Kira R, Takahashi T, Kira JI, Isobe N, Sakai Y, Ohga S. Long-lasting pain and somatosensory disturbances in children with myelin oligodendrocyte glycoprotein antibody-associated disease. Eur J Pediatr 2023:10.1007/s00431-023-04989-z. [PMID: 37119299 DOI: 10.1007/s00431-023-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Myelin oligodendrocyte glycoprotein antibody (MOG-Ab) is an autoantibody associated with acquired demyelinating syndrome (ADS) in childhood and adults. The pathogenic roles of MOG-Ab and long-term outcomes of children with MOG-Ab-associated disease (MOGAD) remain elusive. We investigated the clinical features of children with ADS during follow-up in our institute. Clinical data were retrospectively analyzed using medical charts of patients managed in Kyushu University Hospital from January 1st, 2001, to March 31st, 2022. Participants were children of < 18 years of age when they received a diagnosis of ADS in our hospital. Cell-based assays were used to detect MOG-Ab in serum or cerebrospinal fluid at the onset or recurrence of ADS. The clinical and neuroimaging data of MOG-Ab-positive and MOG-Ab-negative patients were statistically analyzed. Among 31 patients enrolled in this study, 22 (13 females, 59%) received tests for MOG antibodies. Thirteen cases (59%) were MOG-Ab-positive and were therefore defined as MOGAD; 9 (41%) were MOG-Ab-negative. There were no differences between MOGAD and MOG-Ab-negative patients in age at onset, sex, diagnostic subcategories, or duration of follow-up. MOGAD patients experienced headache and/or somatosensory symptoms more frequently than MOG-Ab-negative patients (12/13 (92%) vs. 3/9 (22%); p = 0.0066). Somatosensory problems included persistent pain with hyperesthesia in the left toe, perineal dysesthesia, and facial hypesthesia. No specific neuroimaging findings were associated with MOGAD or the presence of somatosensory symptoms. CONCLUSIONS Long-lasting somatosensory disturbances are prominent comorbidities in children with MOGAD. Prospective cohorts are required to identify molecular and immunogenetic profiles associated with somatosensory problems in MOGAD. WHAT IS KNOWN • Recurrence of demyelinating events occurs in a group of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). WHAT IS NEW • Long-lasting headache and somatosensory problems are frequent comorbidities with pediatric MOGAD. Pain and somatosensory problems may persist for more than 5 years. • Neuroimaging data do not indicate specific findings in children with somatic disturbances.
Collapse
Affiliation(s)
- Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization, Yonezawa National Hospital, Yonezawa, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Finsterer J, Scorza FA. Abnormal cerebrospinal fluid composition can accompany central nervous system involvement in COVID-19. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:977-978. [PMID: 36351422 PMCID: PMC9770062 DOI: 10.1055/s-0042-1758378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Josef Finsterer
- Neurology & Neurophysiology Center, Vienna, Austria.,Address for correspondence Josef Finsterer
| | - Fulvio Alexandre Scorza
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurociência, São Paulo SP, Brazil.
| |
Collapse
|
3
|
Lotan I, Nishiyama S, Manzano GS, Lydston M, Levy M. COVID-19 and the risk of CNS demyelinating diseases: A systematic review. Front Neurol 2022; 13:970383. [PMID: 36203986 PMCID: PMC9530047 DOI: 10.3389/fneur.2022.970383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Viral infections are a proposed possible cause of inflammatory central nervous system (CNS) demyelinating diseases, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). During the past 2 years, CNS demyelinating events associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, but causality is unclear. Objective To investigate the relationship between CNS demyelinating disease development and exacerbation with antecedent and/or concurrent SARS-CoV-2 infection. Methods A systematic literature review of all publications describing either a new diagnosis or relapse of CNS demyelinating diseases (MS, NMOSD, MOGAD) in association with SARS-CoV-2 infection was performed utilizing PRISMA guidelines. Descriptive statistics were used for data analysis, using a case analysis approach. Results Sixty-seven articles met the inclusion criteria for the study. Most of the reported cases of NMOSD (n = 13, 72.2% of reported cases) and MOGAD (n = 27, 96.5% of reported cases) were of new disease onset, presenting with typical clinical and radiographic features of these conditions, respectively. In contrast, reported MS cases varied amongst newly diagnosed cases (n = 10, 10.5% of reported cases), relapses (n = 63, 66.4%) and pseudo-relapses (n = 22, 23.2%). The median duration between COVID-19 infection and demyelinating event onset was 11.5 days (range 0–90 days) in NMOSD, 6 days (range−7 to +45 days) in MOGAD, and 13.5 days (range−21 to +180 days) in MS. Most cases received high-dose corticosteroids with a good clinical outcome. Conclusion Based upon available literature, the rate of CNS demyelinating events occurring in the setting of preceding or concurrent SARS-CoV-2 infection is relatively low considering the prevalence of SARS-CoV-2 infection. The clinical outcomes of new onset or relapsing MS, NMOSD, or MOGAD associated with antecedent or concurrent infection were mostly favorable. Larger prospective epidemiological studies are needed to better delineate the impact of COVID-19 on CNS demyelinating diseases.
Collapse
Affiliation(s)
- Itay Lotan
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Itay Lotan ;
| | - Shuhei Nishiyama
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Giovanna S. Manzano
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Melissa Lydston
- Treadwell Virtual Library for the Massachusetts General Hospital, Boston, MA, United States
| | - Michael Levy
- Division of Neuroimmunology and Neuroinfectious Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|