1
|
Jaramillo-Jiménez E, Sandoval-Barrios J, Walsh FJ, Jaramillo-Jiménez MC, Echeverri-Sánchez JD, Rodríguez-Márquez IA, Barrientos-Montoya HD, Ascencio-Lancheros JL, Giraldo-Palacio JF, Sierra-Arrieta IM, Gómez-Duque DI, Pérez-López S, Bustamante MT. Epileptic encephalopathies secondary to hypothalamic hamartomas treated with radiosurgery: A case series. Epileptic Disord 2024; 26:581-590. [PMID: 38804823 DOI: 10.1002/epd2.20246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Hypothalamic hamartomas are congenital lesions that typically present with gelastic seizures, refractory epilepsy, neurodevelopmental delay, and severe cognitive impairment. Surgical procedures have been reported to be effective in removing the hamartomas, however, they are associated with significant morbidity. Therefore, it is not considered a safe therapeutic modality. Image-guided robotic radiosurgery (CyberKnife® Radiosurgery System) has been shown to provide good outcomes without lasting complications. METHODS This series of cases describes the clinical, radiological, radiotherapeutic, and postsurgical outcomes of five patients with epileptic encephalopathies secondary to hypothalamic hamartomas who were treated with CyberKnife®. RESULTS All patients exhibited refractory epilepsy with gelastic seizures and were unsuitable candidates for surgical resection The prescribed dose ranged between 16 and 25 Gy, delivered in a single fraction for four patients and five fractions for one patient while adhering strictly to visual pathway constraints. After radiosurgery, four patients maintained seizure control (one with an Engel class Ia, three with an Engel class 1d), and another presented sporadic, nondisabling gelastic seizures (with an Engel class IIa). After 24-26 months of follow-up, in three patients, their intelligence quotient scores increased. No complications were reported. SIGNIFICANCE This report suggests that Cyberknife may be a good option for treating hypothalamic hamartoma, particularly in cases where other noninvasive alternatives are unavailable. Nevertheless, additional studies are essential in order to evaluate the effectiveness of the technique in these cases.
Collapse
Affiliation(s)
| | | | - Fergus John Walsh
- School of Medicine, College of Health & Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Romanelli P, Tuniz F, Fabbro S, Beltramo G, Conti A. Image-guided LINAC radiosurgery in hypothalamic hamartomas. Front Neurol 2022; 13:909829. [PMID: 36119668 PMCID: PMC9475216 DOI: 10.3389/fneur.2022.909829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Hypothalamic hamartomas (HH) are developmental malformations that are associated with mild to severe drug-refractory epilepsy. Stereotactic radiosurgery (SRS) is an emerging non-invasive option for the treatment of small and medium-sized HH, providing good seizure outcomes without neurological complications. Here, we report our experience treating HH with frameless LINAC SRS. Materials and methods We retrospectively collected clinical and neuroradiological data of ten subjects with HH-related epilepsy that underwent frameless image-guided SRS. Results All patients underwent single-fraction SRS using a mean prescribed dose of 16.27 Gy (range 16–18 Gy). The median prescription isodose was 79% (range 65–81 Gy). The mean target volume was 0.64 cc (range 0.26–1.16 cc). Eight patients experienced complete or near complete seizure freedom (Engel class I and II). Five patients achieved complete seizure control within 4 to 18 months after the treatment. Four patients achieved Engel class II outcome, with stable results. One patient had a reduction of seizure burden superior to 50% (Engel class III). One patient had no benefit at all (Engel class IV) and refused further treatments. Overall, at the last follow-up, three patients experience class I, five class II, one class III and one class IV outcome. No neurological complications were reported. Conclusions Frameless LINAC SRS provides good seizure and long-term neuropsychosocial outcome, without the risks of neurological complications inherently associated with microsurgical resection.
Collapse
Affiliation(s)
- Pantaleo Romanelli
- Cyberknife Center, Italian Diagnostic Center (CDI), Milan, Italy
- *Correspondence: Pantaleo Romanelli
| | - Francesco Tuniz
- Department of Neurosurgery, ASUFC “Santa Maria della Misericordia”, Udine, Italy
| | - Sara Fabbro
- Department of Neurosurgery, ASUFC “Santa Maria della Misericordia”, Udine, Italy
| | | | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), IRCCS Istituto delle Scienze Neurologiche di Bologna, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Ehret F, Kaul D, Budach V, Lohkamp LN. Applications of Frameless Image-Guided Robotic Stereotactic Radiotherapy and Radiosurgery in Pediatric Neuro-Oncology: A Systematic Review. Cancers (Basel) 2022; 14:cancers14041085. [PMID: 35205834 PMCID: PMC8869944 DOI: 10.3390/cancers14041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND CyberKnife-based robotic radiosurgery (RRS) is a widely used treatment modality for various benign and malignant tumors of the central nervous system (CNS) in adults due to its high precision, favorable safety profile, and efficacy. Although RRS is emerging in pediatric neuro-oncology, scientific evidence for treatment indications, treatment parameters, and patient outcomes is scarce. This systematic review summarizes the current experience and evidence for RRS and robotic stereotactic radiotherapy (RSRT) in pediatric neuro-oncology. METHODS We performed a systematic review based on the databases Ovid Medline, Embase, Cochrane Library, and PubMed to identify studies and published articles reporting on RRS and RSRT treatments in pediatric neuro-oncology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied herein. Articles were included if they described the application of RRS and RSRT in pediatric neuro-oncological patients. The quality of the articles was assessed based on their evidence level and their risk for bias using the original as well as an adapted version of the Newcastle Ottawa Quality Assessment Scale (NOS). Only articles published until 1 August 2021, were included. RESULTS A total of 23 articles were included after final review and removal of duplicates. Articles reported on a broad variety of CNS entities with various treatment indications. A majority of publications lacked substantial sample sizes and a prospective study design. Several reports included adult patients, thereby limiting the possibility of data extraction and analysis of pediatric patients. RRS and RSRT were mostly used in the setting of adjuvant, palliative, and salvage treatments with decent local control rates and acceptable short-to-intermediate-term toxicity. However, follow-up durations were limited. The evidence level was IV for all studies; the NOS score ranged between four and six, while the overall risk of bias was moderate to low. CONCLUSION Publications on RRS and RSRT and their application in pediatric neuro-oncology are rare and lack high-quality evidence with respect to entity-related treatment standards and long-term outcomes. The limited data suggest that RRS and RSRT could be efficient treatment modalities, especially for children who are unsuitable for surgical interventions, suffer from tumor recurrences, or require palliative treatments. Nevertheless, the potential short-term and long-term adverse events must be kept in mind when choosing such a treatment. Prospective studies are necessary to determine the actual utility of RRS and RSRT in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Felix Ehret
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- European Radiosurgery Center, 81377 Munich, Germany
- Correspondence:
| | - David Kaul
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Volker Budach
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany
| | - Laura-Nanna Lohkamp
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada;
| |
Collapse
|
4
|
Abstract
This paper provides a brief history of medical robotic systems. Since the first use of robots in medical procedures, there have been countless companies competing to developed robotic systems in hopes to dominate a field. Many companies have succeeded, and many have failed. This review paper shows the timeline history of some of the old and most successful medical robots and new robotic systems. As the patents of the most successful system, i.e., Da Vinci® Surgical System, have expired or are expiring soon, this paper can provide some insights for new designers and manufacturers to explore new opportunities in this field.
Collapse
|
5
|
Wang M, Zhou Y, Zhang Y, Shi W, Zhou S, Wang Y, Li H, Zhao R. One-Stage High-Density Focal Stereo-Array SEEG-Guided Radiofrequency Thermocoagulation for the Treatment of Pediatric Giant Hypothalamic Hamartomas. Front Neurol 2020; 11:965. [PMID: 32982954 PMCID: PMC7493627 DOI: 10.3389/fneur.2020.00965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Giant hypothalamic hamartomas (HHs) are extremely rare lesions, for which the treatment is challenging. While minimally invasive treatments such as radiofrequency thermal coagulation and laser ablation have improved seizure outcomes, multiple operations are often required. This study investigated the value of one-stage stereo-array radiofrequency thermocoagulation based on stereotactic electroencephalography (SEEG) for pediatric giant HHs. Methods: We analyzed the clinical data of six patients with giant HHs (masses with a maximum diameter >30 mm) who underwent stereotactic electrode implantation between November 2017 and April 2019. After a multidisciplinary discussion, we designed a high-density focal stereo-array electrode implantation strategy. SEEG-guided bipolar coagulations were performed between two contiguous contacts of the same electrode, or between two adjacent contacts of different electrodes. Results: Among the six patients, three were male and three were female, with an average age of 5.08 ± 4.73 years (range, 1.4–12 years); the average follow-up duration was 20.17 ± 5.49 months. One patient had previously undergone open surgery. Four patients had gelastic seizures, one had gelastic and tonic seizures, and one had gelastic and generalized tonic-clonic seizures. The number of implanted electrodes ranged from 3 to 7, with an average of 5.33. One patient had transient diabetes insipidus after the operation, and no child had fever or new hormone metabolisms disorder after surgery. Four patients had Engel I classification outcomes (free from disabling seizures), and two patients had Engel II classification outcomes. Conclusion: Although the exploration of epileptic activity and the extent of ablation are limited by the number of SEEG electrodes for the complete disconnection. One-stage high-density focal stereo-array SEEG-guided radiofrequency was safe and effective for treating pediatric giant HH patients. It can be an alternative method to treat giant HHs where LITT is unavailable.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Zhang
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wei Shi
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Rui Zhao
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|