1
|
Spautz S, Haase L, Tschiche M, Makocki S, Richter C, Troost EG, Stützer K. Comparison of 3D and 4D robustly optimized proton treatment plans for non-small cell lung cancer patients with tumour motion amplitudes larger than 5 mm. Phys Imaging Radiat Oncol 2023; 27:100465. [PMID: 37449022 PMCID: PMC10338142 DOI: 10.1016/j.phro.2023.100465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Background and purpose There is no consensus about an ideal robust optimization (RO) strategy for proton therapy of targets with large intrafractional motion. We investigated the plan robustness of 3D and different 4D RO strategies. Materials and methods For eight non-small cell lung cancer patients with clinical target volume (CTV) motion >5 mm, different RO approaches were investigated: 3DRO considering the average CT (AvgCT) with a target density override, 4DRO considering three/all 4DCT phases, and 4DRO considering the AvgCT and three/all 4DCT phases. Robustness against setup/range errors, interplay effects based on breathing and machine log file data for deliveries with/without rescanning, and interfractional anatomical changes were analyzed for target coverage and OAR sparing. Results All nominal plans fulfilled the clinical requirements with individual CTV coverage differences <2pp; 4DRO without AvgCT generated the most conformal dose distributions. Robustness against setup/range errors was best for 4DRO with AvgCT (18% more passed error scenarios than 3DRO). Interplay effects caused fraction-wise median CTV coverage loss of 3pp and missed maximum dose constraints for heart and esophagus in 18% of scenarios. CTV coverage and OAR sparing fulfilled requirements in all cases when accumulating four interplay scenarios. Interfractional changes caused less target misses for RO with AvgCT compared to 4DRO without AvgCT (≤42%/33% vs. ≥56%/44% failed single/accumulated scenarios). Conclusions All RO strategies provided acceptable plans with equally low robustness against interplay effects demanding other mitigation than rescanning to ensure fraction-wise target coverage. 4DRO considering three phases and the AvgCT provided best compromise on planning effort and robustness.
Collapse
Affiliation(s)
- Saskia Spautz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
| | - Leon Haase
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
| | - Maria Tschiche
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
| | - Sebastian Makocki
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
| | - Christian Richter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Esther G.C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Fetscherstraße 74, PF 41, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
2
|
Taylor S, Lim P, Cantwell J, D’Souza D, Moinuddin S, Chang YC, Gaze MN, Gains J, Veiga C. Image guidance and interfractional anatomical variation in paediatric abdominal radiotherapy. Br J Radiol 2023; 96:20230058. [PMID: 37102707 PMCID: PMC10230397 DOI: 10.1259/bjr.20230058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To identify variables predicting interfractional anatomical variations measured with cone-beam CT (CBCT) throughout abdominal paediatric radiotherapy, and to assess the potential of surface-guided radiotherapy (SGRT) to monitor these changes. METHODS Metrics of variation in gastrointestinal (GI) gas volume and separation of the body contour and abdominal wall were calculated from 21 planning CTs and 77 weekly CBCTs for 21 abdominal neuroblastoma patients (median 4 years, range: 2 - 19 years). Age, sex, feeding tubes, and general anaesthesia (GA) were explored as predictive variables for anatomical variation. Furthermore, GI gas variation was correlated with changes in body and abdominal wall separation, as well as simulated SGRT metrics of translational and rotational corrections between CT/CBCT. RESULTS GI gas volumes varied 74 ± 54 ml across all scans, while body and abdominal wall separation varied 2.0 ± 0.7 mm and 4.1 ± 1.5 mm from planning, respectively. Patients < 3.5 years (p = 0.04) and treated under GA (p < 0.01) experienced greater GI gas variation; GA was the strongest predictor in multivariate analysis (p < 0.01). Absence of feeding tubes was linked to greater body contour variation (p = 0.03). GI gas variation correlated with body (R = 0.53) and abdominal wall (R = 0.63) changes. The strongest correlations with SGRT metrics were found for anterior-posterior translation (R = 0.65) and rotation of the left-right axis (R = -0.36). CONCLUSIONS Young age, GA, and absence of feeding tubes were linked to stronger interfractional anatomical variation and are likely indicative of patients benefiting from adaptive/robust planning pathways. Our data suggest a role for SGRT to inform the need for CBCT at each treatment fraction in this patient group. ADVANCES IN KNOWLEDGE This is the first study to suggest the potential role of SGRT for the management of internal interfractional anatomical variation in paediatric abdominal radiotherapy.
Collapse
Affiliation(s)
- Sabrina Taylor
- University College London, Centre for Medical Image Computing, London, United Kingdom
| | - Pei Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jessica Cantwell
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Derek D’Souza
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Syed Moinuddin
- Radiotherapy, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Yen-Ching Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catarina Veiga
- University College London, Centre for Medical Image Computing, London, United Kingdom
| |
Collapse
|
3
|
Spautz S, Jakobi A, Meijers A, Peters N, Löck S, Knopf AC, Troost EGC, Richter C, Stützer K. Experimental validation of 4D log file-based proton dose reconstruction for interplay assessment considering amplitude-sorted 4DCTs. Med Phys 2022; 49:3538-3549. [PMID: 35342943 DOI: 10.1002/mp.15625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The unpredictable interplay between dynamic proton therapy delivery and target motion in the thorax can lead to severe dose distortions. A fraction-wise four-dimensional (4D) dose reconstruction workflow allows for the assessment of the applied dose after patient treatment while considering the actual beam delivery sequence extracted from machine log files, the recorded breathing pattern and the geometric information from a 4D computed tomography scan (4DCT). Such an algorithm capable of accounting for amplitude-sorted 4DCTs was implemented and its accuracy as well as its sensitivity to input parameter variations was experimentally evaluated. METHODS An anthropomorphic thorax phantom with a movable insert containing a target surrogate and a radiochromic film was irradiated with a monoenergetic field for various 1D target motion forms (sin, sin4) and peak-to-peak amplitudes (5/10/15/20/30 mm). The measured characteristic film dose distributions were compared to the respective sections in the 4D reconstructed doses using a 2D γ-analysis (3mm, 3%); γ-pass rates were derived for different dose grid resolutions (1mm/3mm) and deformable image registrations (DIR, automatic/manual) applied during the 4D dose reconstruction process. In an additional analysis, the sensitivity of reconstructed dose distributions against potential asynchronous timing of the motion and machine log files was investigated for both a monoenergetic field and more realistic 4D robustly optimized fields by artificially introduced offsets of ± 1/5/25/50/250 ms. The resulting dose distributions with asynchronized log files were compared to those with synchronized log files by means of a 3D γ-analysis (1mm, 1%) and the evaluation of absolute dose differences. RESULTS The induced characteristic interplay patterns on the films were well reproduced by the 4D dose reconstruction with 2D γ-pass rates ≥95% for almost all cases with motion magnitudes ≤15 mm. In general, the 2D γ-pass rates showed a significant decrease for larger motion amplitudes and increase when using a finer dose grid resolution but were not affected by the choice of motion form (sin, sin4). There was also a trend, though not statistically significant, towards the manually defined DIR for better quality of the reconstructed dose distributions in the area imaged by the film. The 4D dose reconstruction results for the monoenergetic as well as the 4D robustly optimized fields were robust against small asynchronies between motion and machine log files of up to 5 ms, which is in the order of potential network latencies. CONCLUSIONS We have implemented a 4D log file-based proton dose reconstruction that accounts for amplitude-sorted 4DCTs. Its accuracy was proven to be clinically acceptable for target motion magnitudes of up to 15 mm. Particular attention should be paid to the synchronization of the log file generating systems as the reconstructed dose distribution may vary with log file asynchronies larger than those caused by realistic network delays. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saskia Spautz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Annika Jakobi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nils Peters
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department 1 of Internal Medicine, Center for Integrated Oncology Cologne, University Hospital of Cologne, Cologne, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
4
|
Knopf AC, Czerska K, Fracchiolla F, Graeff C, Molinelli S, Rinaldi I, Rucincki A, Sterpin E, Stützer K, Trnkova P, Zhang Y, Chang JY, Giap H, Liu W, Schild SE, Simone CB, Lomax AJ, Meijers A. Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – a comprehensive review. Radiother Oncol 2022; 169:77-85. [DOI: 10.1016/j.radonc.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
|
5
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Rana S, Rosenfeld AB. Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton-based stereotactic body radiation therapy (SBRT) lung plans. J Appl Clin Med Phys 2021; 22:147-154. [PMID: 34101334 PMCID: PMC8292703 DOI: 10.1002/acm2.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose The purpose of the current study was threefold: (a) investigate the impact of the variations (errors) in spot sizes in robustly optimized pencil beam scanning (PBS) proton‐based stereotactic body radiation therapy (SBRT) lung plans, (b) evaluate the impact of spot sizes and position errors simultaneously, and (c) assess the overall effect of spot size and position errors occurring simultaneously in conjunction with either setup or range errors. Methods In this retrospective study, computed tomography (CT) data set of five lung patients was selected. Treatment plans were regenerated for a total dose of 5000 cGy(RBE) in 5 fractions using a single‐field optimization (SFO) technique. Monte Carlo was used for the plan optimization and final dose calculations. Nominal plans were normalized such that 99% of the clinical target volume (CTV) received the prescription dose. The analysis was divided into three groups. Group 1: The increasing and decreasing spot sizes were evaluated for ±10%, ±15%, and ±20% errors. Group 2: Errors in spot size and spot positions were evaluated simultaneously (spot size: ±10%; spot position: ±1 and ±2 mm). Group 3: Simulated plans from Group 2 were evaluated for the setup (±5 mm) and range (±3.5%) errors. Results Group 1: For the spot size errors of ±10%, the average reduction in D99% for −10% and +10% errors was 0.7% and 1.1%, respectively. For −15% and +15% spot size errors, the average reduction in D99% was 1.4% and 1.9%, respectively. The average reduction in D99% was 2.1% for −20% error and 2.8% for +20% error. The hot spot evaluation showed that, for the same magnitude of error, the decreasing spot sizes resulted in a positive difference (hotter plan) when compared with the increasing spot sizes. Group 2: For a 10% increase in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the average reduction in D99% was 1.5% (1.8%). For a 10% decrease in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the reduction in D99% was 0.8% (0.9%). For the spot size errors of ±10% and spot position errors of ±2 mm, the average reduction in D99% was 2.4%. Group 3: Based on the results from 160 plans (4 plans for spot size [±10%] and position [±1 mm] errors × 8 scenarios × 5 patients), the average D99% was 4748 cGy(RBE) with the average reduction of 5.0%. The isocentric shift in the superior–inferior direction yielded the least homogenous dose distributions inside the target volume. Conclusion The increasing spot sizes resulted in decreased target coverage and dose homogeneity. Similarly, the decreasing spot sizes led to a loss of target coverage, overdosage, and degradation of dose homogeneity. The addition of spot size and position errors to plan robustness parameters (setup and range uncertainties) increased the target coverage loss and decreased the dose homogeneity.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Paganetti H, Beltran C, Both S, Dong L, Flanz J, Furutani K, Grassberger C, Grosshans DR, Knopf AC, Langendijk JA, Nystrom H, Parodi K, Raaymakers BW, Richter C, Sawakuchi GO, Schippers M, Shaitelman SF, Teo BKK, Unkelbach J, Wohlfahrt P, Lomax T. Roadmap: proton therapy physics and biology. Phys Med Biol 2021; 66. [DOI: 10.1088/1361-6560/abcd16] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
|
8
|
Rana S, Rosenfeld AB. Investigating volumetric repainting to mitigate interplay effect on 4D robustly optimized lung cancer plans in pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 22:107-118. [PMID: 33599391 PMCID: PMC7984493 DOI: 10.1002/acm2.13183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The interplay effect between dynamic pencil proton beams and motion of the lung tumor presents a challenge in treating lung cancer patients in pencil beam scanning (PBS) proton therapy. The main purpose of the current study was to investigate the interplay effect on the volumetric repainting lung plans with beam delivery in alternating order (“down” and “up” directions), and explore the number of volumetric repaintings needed to achieve acceptable lung cancer PBS proton plan. Method The current retrospective study included ten lung cancer patients. The total dose prescription to the clinical target volume (CTV) was 70 Gy(RBE) with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized on all ten phases in the 4DCT data set. The Monte Carlo algorithm was used for the 4D robust optimization, as well as for the final dose calculation. The interplay effect was evaluated for both the nominal (i.e., without repainting) as well as volumetric repainting plans. The interplay evaluation was carried out for each of the ten different phases as the starting phases. Several dosimetric metrics were included to evaluate the worst‐case scenario (WCS) and bandwidth based on the results obtained from treatment delivery starting in ten different breathing phases. Results The number of repaintings needed to meet the criteria 1 (CR1) of target coverage (D95% ≥ 98% and D99% ≥ 97%) ranged from 2 to 10. The number of repaintings needed to meet the CR1 of maximum dose (ΔD1% < 1.5%) ranged from 2 to 7. Similarly, the number of repaintings needed to meet CR1 of homogeneity index (ΔHI < 0.03) ranged from 3 to 10. For the target coverage region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 3 to 10, whereas for the high‐dose region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 1 to 7. Based on the overall plan evaluation criteria proposed in the current study, acceptable plans were achieved for nine patients, whereas one patient had acceptable plan with a minor deviation. Conclusion The number of repaintings required to mitigate the interplay effect in PBS lung cancer (tumor motion < 15 mm) was found to be highly patient dependent. For the volumetric repainting with an alternating order, a patient‐specific interplay evaluation strategy must be adopted. Determining the optimal number of repaintings based on the bandwidth and WCS approach could mitigate the interplay effect in PBS lung cancer treatment.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical PhysicsThe Oklahoma Proton CenterOklahoma CityOklahomaUSA
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFLUSA
- Department of Radiation OncologyHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
9
|
den Otter LA, Anakotta RM, Weessies M, Roos CTG, Sijtsema NM, Muijs CT, Dieters M, Wijsman R, Troost EGC, Richter C, Meijers A, Langendijk JA, Both S, Knopf AC. Investigation of inter-fraction target motion variations in the context of pencil beam scanned proton therapy in non-small cell lung cancer patients. Med Phys 2020; 47:3835-3844. [PMID: 32573792 PMCID: PMC7586844 DOI: 10.1002/mp.14345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose For locally advanced‐stage non‐small cell lung cancer (NSCLC), inter‐fraction target motion variations during the whole time span of a fractionated treatment course are assessed in a large and representative patient cohort. The primary objective is to develop a suitable motion monitoring strategy for pencil beam scanning proton therapy (PBS‐PT) treatments of NSCLC patients during free breathing. Methods Weekly 4D computed tomography (4DCT; 41 patients) and daily 4D cone beam computed tomography (4DCBCT; 10 of 41 patients) scans were analyzed for a fully fractionated treatment course. Gross tumor volumes (GTVs) were contoured and the 3D displacement vectors of the centroid positions were compared for all scans. Furthermore, motion amplitude variations in different lung segments were statistically analyzed. The dosimetric impact of target motion variations and target motion assessment was investigated in exemplary patient cases. Results The median observed centroid motion was 3.4 mm (range: 0.2–12.4 mm) with an average variation of 2.2 mm (range: 0.1–8.8 mm). Ten of 32 patients (31.3%) with an initial motion <5 mm increased beyond a 5‐mm motion amplitude during the treatment course. Motion observed in the 4DCBCT scans deviated on average 1.5 mm (range: 0.0–6.0 mm) from the motion observed in the 4DCTs. Larger motion variations for one example patient compromised treatment plan robustness while no dosimetric influence was seen due to motion assessment biases in another example case. Conclusions Target motion variations were investigated during the course of radiotherapy for NSCLC patients. Patients with initial GTV motion amplitudes of < 2 mm can be assumed to be stable in motion during the treatment course. For treatments of NSCLC patients who exhibit motion amplitudes of > 2 mm, 4DCBCT should be considered for motion monitoring due to substantial motion variations observed.
Collapse
Affiliation(s)
- Lydia A den Otter
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Renske M Anakotta
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Menkedina Weessies
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Catharina T G Roos
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Margriet Dieters
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, OncoRay, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden, Rossendorf, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, OncoRay, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arturs Meijers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
10
|
Brooks ED, Ning MS, Verma V, Zhu XR, Chang JY. Proton therapy for non-small cell lung cancer: the road ahead. Transl Lung Cancer Res 2019; 8:S202-S212. [PMID: 31673525 PMCID: PMC6795573 DOI: 10.21037/tlcr.2019.07.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Proton therapy is an evolving radiotherapy modality with indication for numerous cancer types. With the benefits of reducing dose and sparing normal tissue, protons offer a clear physical and dosimetric advantage over photon radiotherapy for many patients. However, its impact on one type of disease, non-small cell lung cancer (NSCLC), is still not fully understood. Our review aims to highlight the data for using proton therapy in NSCLC, with a focus on the clinical data-or lack thereof-supporting proton treatment for early and advanced stage disease. In evaluating these data, we consider how future directions and advances in proton technology give rise for hope in defining a role for protons in improving NSCLC outcomes. We close with considerations for next steps and the challenges ahead in using proton therapy for this unique patient population.
Collapse
Affiliation(s)
- Eric D. Brooks
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - X. Ronald Zhu
- Proton Therapy Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Potential for Improvements in Robustness and Optimality of Intensity-Modulated Proton Therapy for Lung Cancer with 4-Dimensional Robust Optimization. Cancers (Basel) 2019; 11:cancers11010035. [PMID: 30609652 PMCID: PMC6356681 DOI: 10.3390/cancers11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Major challenges in the application of intensity-modulated proton therapy (IMPT) for lung cancer patients include the uncertainties associated with breathing motion, its mitigation and its consideration in IMPT optimization. The primary objective of this research was to evaluate the potential of four-dimensional robust optimization (4DRO) methodology to make IMPT dose distributions resilient to respiratory motion as well as to setup and range uncertainties; Methods: The effect of respiratory motion, characterized by different phases of 4D computed tomography (4DCT), was incorporated into an in-house 4DRO system. Dose distributions from multiple setup and range uncertainty scenarios were calculated for each of the ten phases of CT datasets. The 4DRO algorithm optimizes dose distributions to achieve target dose coverage and normal tissue sparing for multiple setup and range uncertainty scenarios as well as for all ten respiratory phases simultaneously. IMPT dose distributions of ten lung cancer patients with different tumor sizes and motion magnitudes were optimized to illustrate our approach and its potential; Results: Compared with treatment plans generated using the conventional planning target volume (PTV)-based optimization and 3D robust optimization (3DRO), plans generated by 4DRO were found to have superior clinical target volume coverage and dose robustness in the face of setup and range uncertainties as well as for respiratory motion. In most of the cases we studied, 4DRO also resulted in more homogeneous target dose distributions. Interestingly, such improvements were found even for cases in which moving diaphragms intruded into the proton beam paths; Conclusion: The incorporation of respiratory motion, along with setup and range uncertainties, into robust optimization, has the potential to improve the resilience of target and normal tissue dose distributions in IMPT plans in the face of the uncertainties considered. Moreover, it improves the optimality of plans compared to PTV-based optimization as well as 3DRO.
Collapse
|