1
|
Kim H, Park S, Kim J, Kim JS, Kim DW, Kim N, Uhm JS, Kim D, Pak HN, Hong CS, Yoon HI. Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia. Radiat Oncol J 2024; 42:319-329. [PMID: 39748532 DOI: 10.3857/roj.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance. MATERIALS AND METHODS The study developed a consistent institutional workflow for VT-SABR, including computed tomography (CT) simulation, target volume definition, treatment planning, robust plan evaluation, quality assurance, and image-guided strategy. The workflow was implemented for two patients with cardiac arrhythmia. Accurate target volume definition using planning CT images and electronic anatomical mapping was critical. A four-dimensional (4D) cone-beam CT (CBCT) and breath-hold electrocardiographic gated CT images reliably detected target motion. RESULTS The resulting plans exhibited a conformity index greater than 0.7 and a gradient index around G4.0. Dose constraints for the planning target volume (PTV) aimed for 95% or higher PTV dose coverage, with a maximum dose of 200% or lower. However, one case did not meet the PTV dose coverage due to the proximity of the PTV to gastrointestinal organs. Plans adhered to dose constraints for organs at risk near the heart, but meeting constraints for specific cardiac sub-structures was challenging and dependent on PTV location. CONCLUSION The plans demonstrated robustness against respiratory motion and patient positional uncertainty through a robust evaluation function. The 4D and intra-fractional CBCT were effective in verifying target motion and setup stability.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangjoon Park
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Daehoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wang CY, Ho LT, Lin LY, Chan HM, Chen HY, Yu TL, Huang YS, Kuo SH, Lee WJ, Chen JLY. Noninvasive cardiac radioablation for ventricular tachycardia: dosimetric comparison between linear accelerator- and robotic CyberKnife-based radiosurgery systems. Radiat Oncol 2023; 18:187. [PMID: 37950307 PMCID: PMC10638803 DOI: 10.1186/s13014-023-02370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Few dosimetric comparisons have been published between linear accelerator (LA)-based systems and CyberKnife (CK)-based robotic radiosurgery systems for cardiac radio-ablation in ventricular tachycardia. This study aimed to compare the dosimetry of noninvasive cardiac radio-ablation deliverable on LA with that on CK. METHODS Thirteen patients who underwent noninvasive cardiac radio-ablation by LA were included. The prescribed dose was 25 Gy in 1 fraction, and the average planning target volume was 49.8 ± 31.0 cm3 (range, 14.4-93.7 cm3). CK plans were generated for comparison. RESULTS Both the CK and LA plans accomplished appropriate dose coverage and normal tissue sparing. Compared with the LA plans, the CK plans achieved significantly lower gradient indices (3.12 ± 0.71 vs. 3.48 ± 0.55, p = 0.031) and gradient measures (1.00 ± 0.29 cm vs. 1.17 ± 0.29 cm, p < 0.001). They had similar equivalent conformity indices (CK vs. LA: 0.84 ± 0.08 vs. 0.87 ± 0.07, p = 0.093) and maximum doses 2 cm from the planning target volume (PTV) in any direction (CK vs. LA: 50.8 ± 9.9% vs. 53.1 ± 5.3%, p = 0.423). The dosimetric advantages of CK were more prominent in patients with a PTV of ≤ 50 cm3 or a spherical PTV. In patients with a PTV of > 50 cm3 or a non-spherical PTV, the LA and CK plans were similar regarding dosimetric parameters. CK plans involved more beams (232.2 ± 110.8 beams vs. 10.0 ± 1.7 arcs) and longer treatment times (119.2 ± 43.3 min vs. 22.4 ± 1.6 min, p = 0.007). CONCLUSIONS Both CK and LA are ideal modalities for noninvasive cardiac radio-ablation. Upfront treatment should be considered based on clinical intent.
Collapse
Affiliation(s)
- Ching-Yu Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ting Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Hsing-Min Chan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yi Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Lin Yu
- Department of Radiation Oncology, Fu-Jen Catholic University Hospital, Taipei, Taiwan
| | - Yu-Sen Huang
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Taipei, 106, Taiwan
| | - Wen-Jeng Lee
- Department of Medical Imaging, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Radiation Oncology, National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Taipei, 106, Taiwan.
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Perrin R, Maguire P, Garonna A, Weidlich G, Bulling S, Fargier-Voiron M, De Marco C, Rossi E, Ciocca M, Vitolo V, Mirandola A. Case Report: Treatment Planning Study to Demonstrate Feasibility of Transthoracic Ultrasound Guidance to Facilitate Ventricular Tachycardia Ablation With Protons. Front Cardiovasc Med 2022; 9:849247. [PMID: 35600462 PMCID: PMC9116532 DOI: 10.3389/fcvm.2022.849247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundCardiac arrhythmias, such as ventricular tachycardia, are disruptions in the normal cardiac function that originate from problems in the electrical conduction of signals inside the heart. Recently, a non-invasive treatment option based on external photon or proton beam irradiation has been used to ablate the arrhythmogenic structures. Especially in proton therapy, based on its steep dose gradient, it is crucial to monitor the motion of the heart in order to ensure that the radiation dose is delivered to the correct location. Transthoracic ultrasound imaging has the potential to provide guidance during this treatment delivery. However, it has to be noted that the presence of an ultrasound probe on the chest of the patient introduces constraints on usable beam angles for both protons and photon treatments. This case report investigates the possibility to generate a clinically acceptable proton treatment plan while the ultrasound probe is present on the chest of the patient.CaseA treatment plan study was performed based on a 4D cardiac-gated computed tomography scan of a 55 year-old male patient suffering from refractory ventricular tachycardia who underwent cardiac radioablation. A proton therapy treatment plan was generated for the actual treatment target in presence of an ultrasound probe on the chest of this patient. The clinical acceptability of the generated plan was confirmed by evaluating standard target dose-volume metrics, dose to organs-at-risk and target dose conformity and homogeneity.ConclusionThe generation of a clinically acceptable proton therapy treatment plan for cardiac radioablation of ventricular tachycardia could be performed in the presence of an ultrasound probe on the chest of the patient. These results establish a basis and justification for continued research and product development for ultrasound-guided cardiac radioablation.
Collapse
Affiliation(s)
| | | | - Adriano Garonna
- EBAMed SA, Geneva, Switzerland
- *Correspondence: Adriano Garonna
| | - Georg Weidlich
- Radiation Oncology, National Medical Physics and Dosimetry Company, Palo Alto, CA, United States
| | | | | | | | - Eleonora Rossi
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | | |
Collapse
|
4
|
Kurzelowski R, Latusek T, Miszczyk M, Jadczyk T, Bednarek J, Sajdok M, Gołba KS, Wojakowski W, Wita K, Gardas R, Dolla Ł, Bekman A, Grza̧dziel A, Blamek S. Radiosurgery in Treatment of Ventricular Tachycardia – Initial Experience Within the Polish SMART-VT Trial. Front Cardiovasc Med 2022; 9:874661. [PMID: 35509272 PMCID: PMC9058092 DOI: 10.3389/fcvm.2022.874661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundStereotactic Arrhythmia Radioablation (STAR) is an emerging treatment modality for patients with sustained ventricular tachycardia (VT) and refractory to treatment with drugs and radiofrequency catheter ablation (RFA). It is believed that up to 12–17% of patients experience recurrence of VT within 1 year of follow-up; thus, novel therapeutic options are needed. The aim of this article is to present initial experience within a novel treatment modality for VT.Case SummaryTwo patients with a medical history of coronary artery disease and heart failure with reduced left ventricle (LV) ejection fraction, after implantation of cardioverter-defibrillator (ICD) and previous unsuccessful RFAs owing to sustained VT were admitted to the cardiology department due to recurrence of sustained VT episodes. With electroanatomical mapping (EAM), the VT substrate in LV has been confirmed and specified. In order to determine the target volume for radioablation, contrast-enhanced computed tomography was performed and the arrhythmia substrate was contoured using EAM data. Using the Volumetric Modulated Arc Therapy technique and three 6 MeV flattening filter-free photon beam fields, a single dose of 25 Gy was delivered to the target volume structure located in the apex and anterior apical segments of LV in the first patient and in the apex, anterolateral and inferior apical segments of the second patient. In both cases, volumes of the target structures were comparable. Interrogation of the implanted ICD at follow-up visits throughout 6 months after the treatment revealed no VT episodes in the first patient and sudden periprocedural increase in VT burden with a subsequent gradual decrease of ventricular arrhythmia to only two non-sustained episodes at the end of the follow-up period in case of the second patient. A significant reduction in premature ventricular contractions burden was observed compared to the pre-treatment period. No noticeable deterioration in LV function was noted, nor any adverse effects of radiosurgery associated with the implanted device.ConclusionThe early response to STAR can be unpredictable and probably does not reflect the final outcome of irradiation. Close monitoring of patients, especially in the early period after irradiation is crucial to properly handle potentially harmful early reactions to STAR.
Collapse
Affiliation(s)
- Radosław Kurzelowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- *Correspondence: Radosław Kurzelowski,
| | - Tomasz Latusek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Marcin Miszczyk
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Jacek Bednarek
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
- Department of Electrocardiology, Prof. Leszek Giec Upper-Silesian Medical Centre of the Medical University of Silesia, Katowice, Poland
- Department of Electrocardiology, John Paul II Hospital, Kraków, Poland
| | - Mateusz Sajdok
- Department of Electrocardiology, Prof. Leszek Giec Upper-Silesian Medical Centre of the Medical University of Silesia, Katowice, Poland
| | - Krzysztof S. Gołba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
- Department of Electrocardiology, Prof. Leszek Giec Upper-Silesian Medical Centre of the Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Krystian Wita
- First Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Rafał Gardas
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
- Department of Electrocardiology, Prof. Leszek Giec Upper-Silesian Medical Centre of the Medical University of Silesia, Katowice, Poland
| | - Łukasz Dolla
- Department of Radiotherapy Planning, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Adam Bekman
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Aleksandra Grza̧dziel
- Department of Radiotherapy Planning, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
5
|
Chalkia M, Kouloulias V, Tousoulis D, Deftereos S, Tsiachris D, Vrachatis D, Platoni K. Stereotactic Arrhythmia Radioablation as a Novel Treatment Approach for Cardiac Arrhythmias: Facts and Limitations. Biomedicines 2021; 9:1461. [PMID: 34680578 PMCID: PMC8533522 DOI: 10.3390/biomedicines9101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is highly focused radiation therapy that targets well-demarcated, limited-volume malignant or benign tumors with high accuracy and precision using image guidance. Stereotactic arrhythmia radioablation (STAR) applies SABR to treat cardiac arrhythmias, including ventricular tachycardia (VT) and atrial fibrillation (AF), and has recently been a focus in research. Clinical studies have demonstrated electrophysiologic conduction blockade and histologic fibrosis after STAR, which provides a proof of principle for its potential for treating arrhythmias. This review will present the basic STAR principles, available clinical study outcomes, and how the technique has evolved since the first pre-clinical study. In addition to the clinical workflow, focus will be given on the process for stereotactic radiotherapy Quality Assurance (QA) tests, as well as the need for establishing a standardized QA protocol. Future implications and potential courses of research will also be discussed.
Collapse
Affiliation(s)
- Marina Chalkia
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Vassilis Kouloulias
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Dimitris Tousoulis
- First Department of Cardiology, ‘Hippokration’ General Hospital, Vasilissis Sofias 114, 115 27 Athens, Greece;
| | - Spyridon Deftereos
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | | | - Dimitrios Vrachatis
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | - Kalliopi Platoni
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| |
Collapse
|
6
|
Aras D, Ozturk HF, Ozdemir E, Kervan U, Kara M, Cay S, Coskun N, Ozcan F, Korkmaz A, Ozeke O, Topaloglu S, Tezcan Y. Use of Stereotactic Radioablation Therapy as a Bailout Therapy for Refractory Ventricular Tachycardia in a Patient with a No-entry Left Ventricle. J Innov Card Rhythm Manag 2021; 12:4671-4675. [PMID: 34595050 PMCID: PMC8476093 DOI: 10.19102/icrm.2021.120902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
In patients with mechanical aortic and mitral valves and left ventricular (LV) tachycardia (VT), catheter ablation is technically challenging due to the limited access to the LV. Promising new alternatives to radiofrequency ablation include pulsed-field electroporation, percutaneous or surgical sympathetic neuromodulation, and noninvasive stereotactic radioablation therapy (SBRT). We herein describe the effect of SBRT as a bailout therapy on the management of a challenging VT case in the presence of double left-sided mechanical valves.
Collapse
Affiliation(s)
- Dursun Aras
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Huseyin Furkan Ozturk
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Elif Ozdemir
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Umit Kervan
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Meryem Kara
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Cay
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nazim Coskun
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Firat Ozcan
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Topaloglu
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yilmaz Tezcan
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
7
|
Bonaparte I, Gregucci F, Surgo A, Di Monaco A, Vitulano N, Ludovico E, Carbonara R, Ciliberti MP, Quadrini F, Grimaldi M, Fiorentino A. Linac-based STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia: a treatment planning study. Jpn J Radiol 2021; 39:1223-1228. [PMID: 34241797 DOI: 10.1007/s11604-021-01159-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECT To analyze geometrical approaches, prescription modalities, and delivery efficiency for linear accelerator (Linac)-based STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia. METHODS The anatomy and planning target volume (PTV) of the first Italian STAR patient were used. To assess geometrical approaches, 3 plans prescribed to 75% isodose-line, differing for number, length of arcs, and couch rotations, were generated and compared (Plans#1-3). Volumetric-arc with 6-MV flattening-filter-free (FFF) was employed. To evaluate prescription modality and delivery, the best geometrical plan was compared with other plans prescribed on 70%, 65%, and 60% isodose-line and with another one using 10MV-FFF beams (Plans#4-7). RESULTS For Plans#1-3, PTV coverage, mean cardiac dose, monitor units (MUs), and beam-delivery-time (BDT) were 96-98.5%, 4.9-5.2 Gy, 7047-7790, and 5-6 min, respectively. Plans#4-7 were similar in terms of mean cardiac dose, MUs and BDT to Plans#1-3, except in maximum dose and lower time for 10MV-FFF plan. CONCLUSION Linac-based STAR is safe and efficient in terms of BDT and MUs. To ensure high dose to PTV, different dose prescription modalities should be evaluated. The 10FFF approach was the faster but not suitable in patient with cardiac implantable electronic devices.
Collapse
Affiliation(s)
- I Bonaparte
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - F Gregucci
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - A Surgo
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy.
| | - A Di Monaco
- Cardiology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy.,Department of Cardiology, University of Foggia, Foggia, Italy
| | - N Vitulano
- Cardiology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - E Ludovico
- Radiology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - R Carbonara
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - M P Ciliberti
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - F Quadrini
- Cardiology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - M Grimaldi
- Cardiology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - A Fiorentino
- Radiation Oncology Department, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| |
Collapse
|
8
|
Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H. Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 2020; 109:1319-1332. [PMID: 32306083 PMCID: PMC7588361 DOI: 10.1007/s00392-020-01650-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Single-session high-dose stereotactic radiotherapy (radiosurgery) is a new treatment option for otherwise untreatable patients suffering from refractory ventricular tachycardia (VT). In the initial single-center case studies and feasibility trials, cardiac radiosurgery has led to significant reductions of VT burden with limited toxicities. However, the full safety profile remains largely unknown. METHODS/DESIGN In this multi-center, multi-platform clinical feasibility trial which we plan is to assess the initial safety profile of radiosurgery for ventricular tachycardia (RAVENTA). High-precision image-guided single-session radiosurgery with 25 Gy will be delivered to the VT substrate determined by high-definition endocardial electrophysiological mapping. The primary endpoint is safety in terms of successful dose delivery without severe treatment-related side effects in the first 30 days after radiosurgery. Secondary endpoints are the assessment of VT burden, reduction of implantable cardioverter defibrillator (ICD) interventions [shock, anti-tachycardia pacing (ATP)], mid-term side effects and quality-of-life (QoL) in the first year after radiosurgery. The planned sample size is 20 patients with the goal of demonstrating safety and feasibility of cardiac radiosurgery in ≥ 70% of the patients. Quality assurance is provided by initial contouring and planning benchmark studies, joint multi-center treatment decisions, sequential patient safety evaluations, interim analyses, independent monitoring, and a dedicated data and safety monitoring board. DISCUSSION RAVENTA will be the first study to provide the initial robust multi-center multi-platform prospective data on the therapeutic value of cardiac radiosurgery for ventricular tachycardia. TRIAL REGISTRATION NUMBER NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. The study was initiated on November 18th, 2019, and is currently recruiting patients.
Collapse
Affiliation(s)
- Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Daniel Buergy
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Maren Vens
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lina Eidinger
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Boris Rudic
- Medizinische Klinik I, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Judit Boda-Heggemann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Frank A. Giordano
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Medizinische Fakultät Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Medizinische Klinik mit Schwerpunkt Kardiologie (CVK), Abteilung für Elektrophysiologie und Rhythmologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Schweikard
- Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Lübeck, Germany
| | - Denise Olbrich
- Universität zu Lübeck, Zentrum für Klinische Studien, Lübeck, Germany
| | - Inke R. König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Frank-Andre Siebert
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105 Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
9
|
STRA-MI-VT (STereotactic RadioAblation by Multimodal Imaging for Ventricular Tachycardia): rationale and design of an Italian experimental prospective study. J Interv Card Electrophysiol 2020; 61:583-593. [PMID: 32851578 PMCID: PMC8376737 DOI: 10.1007/s10840-020-00855-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Background Ventricular tachycardia (VT) is a life-threatening condition, which usually implies the need of an implantable cardioverter defibrillator in combination with antiarrhythmic drugs and catheter ablation. Stereotactic body radiotherapy (SBRT) represents a common form of therapy in oncology, which has emerged as a well-tolerated and promising alternative option for the treatment of refractory VT in patients with structural heart disease. Objective In the STRA-MI-VT trial, we will investigate as primary endpoints safety and efficacy of SBRT for the treatment of recurrent VT in patients not eligible for catheter ablation. Secondary aim will be to evaluate SBRT effects on global mortality, changes in heart function, and in the quality of life during follow-up. Methods This is a spontaneous, prospective, experimental (phase Ib/II), open-label study (NCT04066517); 15 patients with structural heart disease and intractable VT will be enrolled within a 2-year period. Advanced multimodal cardiac imaging preceding chest CT-simulation will serve to elaborate the treatment plan on different linear accelerators with target and organs-at-risk definition. SBRT will consist in a single radioablation session of 25 Gy. Follow-up will last up to 12 months. Conclusions We test the hypothesis that SBRT reduces the VT burden in a safe and effective way, leading to an improvement in quality of life and survival. If the results will be favorable, radioablation will turn into a potential alternative option for selected patients with an indication to VT ablation, based on the opportunity to treat ventricular arrhythmogenic substrates in a convenient and less-invasive manner.
Collapse
|