1
|
Murugan SRB, Sanjay S, Somanath A, Mahendradas P, Patil A, Kaur K, Gurnani B. Artificial Intelligence in Uveitis: Innovations in Diagnosis and Therapeutic Strategies. Clin Ophthalmol 2024; 18:3753-3766. [PMID: 39703602 PMCID: PMC11656483 DOI: 10.2147/opth.s495307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
In the dynamic field of ophthalmology, artificial intelligence (AI) is emerging as a transformative tool in managing complex conditions like uveitis. Characterized by diverse inflammatory responses, uveitis presents significant diagnostic and therapeutic challenges. This systematic review explores the role of AI in advancing diagnostic precision, optimizing therapeutic approaches, and improving patient outcomes in uveitis care. A comprehensive search of PubMed, Scopus, Google Scholar, Web of Science, and Embase identified over 10,000 articles using primary and secondary keywords related to AI and uveitis. Rigorous screening based on predefined criteria reduced the pool to 52 high-quality studies, categorized into six themes: diagnostic support algorithms, screening algorithms, standardization of Uveitis Nomenclature (SUN), AI applications in management, systemic implications of AI, and limitations with future directions. AI technologies, including machine learning (ML) and deep learning (DL), demonstrated proficiency in anterior chamber inflammation detection, vitreous haze grading, and screening for conditions like ocular toxoplasmosis. Despite these advancements, challenges such as dataset quality, algorithmic transparency, and ethical concerns persist. Future research should focus on developing robust, multimodal AI systems and fostering collaboration among academia and industry to ensure equitable, ethical, and effective AI applications. The integration of AI heralds a new era in uveitis management, emphasizing precision medicine and enhanced care delivery.
Collapse
Affiliation(s)
- Siva Raman Bala Murugan
- Department of Uveitis and Ocular Inflammation Uveitis Clinic, Aravind Eye Hospital, Pondicherry, 605007, India
| | - Srinivasan Sanjay
- Department of Clinical Services, Singapore National Eye Centre, Third Hospital Ave, Singapore City, 168751, Singapore
| | - Anjana Somanath
- Department of Uveitis and Ocular Inflammation, Aravind Eye Hospital, Madurai, Tamil Nadu
| | - Padmamalini Mahendradas
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, 560010, India
| | - Aditya Patil
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, 560010, India
| | - Kirandeep Kaur
- Department of Cataract, Pediatric Ophthalmology and Strabismus, Gomabai Netralaya and Research Centre, Neemuch, Madhya Pradesh, 458441, India
| | - Bharat Gurnani
- Department of Cataract, Cornea and Refractive Surgery, Gomabai Netralaya and Research Centre, Neemuch, Madhya Pradesh, 458441, India
| |
Collapse
|
2
|
Gill GS, Blair J, Litinsky S. Evaluating the Performance of ChatGPT 3.5 and 4.0 on StatPearls Oculoplastic Surgery Text- and Image-Based Exam Questions. Cureus 2024; 16:e73812. [PMID: 39691123 PMCID: PMC11650114 DOI: 10.7759/cureus.73812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION The emergence of large language models (LLMs) has led to significant interest in their potential use as medical assistive tools. Prior investigations have analyzed the overall comparative performance of LLM versions within different ophthalmology subspecialties. However, limited investigations have characterized LLM performance on image-based questions, a recent advance in LLM capabilities. The purpose of this study was to evaluate the performance of Chat Generative Pre-Trained Transformers (ChatGPT) versions 3.5 and 4.0 on image-based and text-only questions using oculoplastic subspecialty questions from StatPearls and OphthoQuestions question banks. METHODS This study utilized 343 non-image questions from StatPearls, 127 images from StatPearls, and 89 OphthoQuestions. All of these questions were specific to Oculoplastics. The information collected included correctness, distribution of answers, and if an additional prompt was necessary. Text-only questions were compared between ChatGPT-3.5 and ChatGPT-4.0. Also, text-only and multimodal (image-based) questions answered by ChatGPT-4.0 were compared. RESULTS ChatGPT-3.5 answered 56.85% (195/343) of text-only questions correctly, while ChatGPT-4.0 achieved 73.46% (252/343), showing a statistically significant difference in accuracy (p<0.05). The biserial correlation between ChatGPT-3.5 and human performance on the StatPearls question bank was 0.198, with a standard deviation of 0.195. When ChatGPT-3.5 was incorrect, the average human correctness was 49.39% (SD 26.27%), and when it was correct, human correctness averaged 57.82% (SD 30.14%) with a t-statistic of 3.57 and a p-value of 0.0004. For ChatGPT-4.0, the biserial correlation was 0.226 (SD 0.213). When ChatGPT-4.0 was incorrect, human correctness averaged 45.49% (SD 24.85%), and when it was correct, human correctness was 57.02% (SD 29.75%) with a t-statistic of 4.28 and a p-value of 0.0006. On image-only questions, ChatGPT-4.0 correctly answered 56.94% (123/216), significantly lower than its performance on text-only questions (p<0.05). DISCUSSION AND CONCLUSION This study shows that ChatGPT-4.0 performs better on the oculoplastic subspecialty than prior versions. However, significant challenges remain regarding accuracy, particularly when integrating image-based prompts. While showing promise within medical education, further progress must be made regarding LLM reliability, and caution should be used until further advancement is achieved.
Collapse
Affiliation(s)
- Gurnoor S Gill
- Medical School, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Jacob Blair
- Ophthalmology, Larkin Community Hospital (LCH) Lake Erie College of Osteopathic Medicine (LECOM), Miami, USA
| | - Steven Litinsky
- Ophthalmology, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| |
Collapse
|
3
|
Paul S, Govindaraj S, Jk J. ChatGPT Versus National Eligibility cum Entrance Test for Postgraduate (NEET PG). Cureus 2024; 16:e63048. [PMID: 39050297 PMCID: PMC11268980 DOI: 10.7759/cureus.63048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction With both suspicion and excitement, artificial intelligence tools are being integrated into nearly every aspect of human existence, including medical sciences and medical education. The newest large language model (LLM) in the class of autoregressive language models is ChatGPT. While ChatGPT's potential to revolutionize clinical practice and medical education is under investigation, further research is necessary to understand its strengths and limitations in this field comprehensively. Methods Two hundred National Eligibility cum Entrance Test for Postgraduate 2023 questions were gathered from various public education websites and individually entered into Microsoft Bing (GPT-4 Version 2.2.1). Microsoft Bing Chatbot is currently the only platform incorporating all of GPT-4's multimodal features, including image recognition. The results were subsequently analyzed. Results Out of 200 questions, ChatGPT-4 answered 129 correctly. The most tested specialties were medicine (15%), obstetrics and gynecology (15%), general surgery (14%), and pathology (10%), respectively. Conclusion This study sheds light on how well the GPT-4 performs in addressing the NEET-PG entrance test. ChatGPT has potential as an adjunctive instrument within medical education and clinical settings. Its capacity to react intelligently and accurately in complicated clinical settings demonstrates its versatility.
Collapse
Affiliation(s)
- Sam Paul
- General Surgery, St John's Medical College Hospital, Bengaluru, IND
| | - Sridar Govindaraj
- Surgical Gastroenterology and Laparoscopy, St John's Medical College Hospital, Bengaluru, IND
| | - Jerisha Jk
- Pediatrics and Neonatology, Christian Medical College Ludhiana, Ludhiana, IND
| |
Collapse
|
4
|
Biswas S, Davies LN, Sheppard AL, Logan NS, Wolffsohn JS. Utility of artificial intelligence-based large language models in ophthalmic care. Ophthalmic Physiol Opt 2024; 44:641-671. [PMID: 38404172 DOI: 10.1111/opo.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE With the introduction of ChatGPT, artificial intelligence (AI)-based large language models (LLMs) are rapidly becoming popular within the scientific community. They use natural language processing to generate human-like responses to queries. However, the application of LLMs and comparison of the abilities among different LLMs with their human counterparts in ophthalmic care remain under-reported. RECENT FINDINGS Hitherto, studies in eye care have demonstrated the utility of ChatGPT in generating patient information, clinical diagnosis and passing ophthalmology question-based examinations, among others. LLMs' performance (median accuracy, %) is influenced by factors such as the iteration, prompts utilised and the domain. Human expert (86%) demonstrated the highest proficiency in disease diagnosis, while ChatGPT-4 outperformed others in ophthalmology examinations (75.9%), symptom triaging (98%) and providing information and answering questions (84.6%). LLMs exhibited superior performance in general ophthalmology but reduced accuracy in ophthalmic subspecialties. Although AI-based LLMs like ChatGPT are deemed more efficient than their human counterparts, these AIs are constrained by their nonspecific and outdated training, no access to current knowledge, generation of plausible-sounding 'fake' responses or hallucinations, inability to process images, lack of critical literature analysis and ethical and copyright issues. A comprehensive evaluation of recently published studies is crucial to deepen understanding of LLMs and the potential of these AI-based LLMs. SUMMARY Ophthalmic care professionals should undertake a conservative approach when using AI, as human judgement remains essential for clinical decision-making and monitoring the accuracy of information. This review identified the ophthalmic applications and potential usages which need further exploration. With the advancement of LLMs, setting standards for benchmarking and promoting best practices is crucial. Potential clinical deployment requires the evaluation of these LLMs to move away from artificial settings, delve into clinical trials and determine their usefulness in the real world.
Collapse
Affiliation(s)
- Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Leon N Davies
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amy L Sheppard
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Nicola S Logan
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
5
|
Xu X, Chen Y, Miao J. Opportunities, challenges, and future directions of large language models, including ChatGPT in medical education: a systematic scoping review. JOURNAL OF EDUCATIONAL EVALUATION FOR HEALTH PROFESSIONS 2024; 21:6. [PMID: 38486402 PMCID: PMC11035906 DOI: 10.3352/jeehp.2024.21.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND ChatGPT is a large language model (LLM) based on artificial intelligence (AI) capable of responding in multiple languages and generating nuanced and highly complex responses. While ChatGPT holds promising applications in medical education, its limitations and potential risks cannot be ignored. METHODS A scoping review was conducted for English articles discussing ChatGPT in the context of medical education published after 2022. A literature search was performed using PubMed/MEDLINE, Embase, and Web of Science databases, and information was extracted from the relevant studies that were ultimately included. RESULTS ChatGPT exhibits various potential applications in medical education, such as providing personalized learning plans and materials, creating clinical practice simulation scenarios, and assisting in writing articles. However, challenges associated with academic integrity, data accuracy, and potential harm to learning were also highlighted in the literature. The paper emphasizes certain recommendations for using ChatGPT, including the establishment of guidelines. Based on the review, 3 key research areas were proposed: cultivating the ability of medical students to use ChatGPT correctly, integrating ChatGPT into teaching activities and processes, and proposing standards for the use of AI by medical students. CONCLUSION ChatGPT has the potential to transform medical education, but careful consideration is required for its full integration. To harness the full potential of ChatGPT in medical education, attention should not only be given to the capabilities of AI but also to its impact on students and teachers.
Collapse
Affiliation(s)
- Xiaojun Xu
- Division of Hematology/Oncology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Zhejiang, China
| | - Yixiao Chen
- Division of Hematology/Oncology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Zhejiang, China
| | - Jing Miao
- Division of Hematology/Oncology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Zhejiang, China
| |
Collapse
|
6
|
Alotaibi SS, Rehman A, Hasnain M. Revolutionizing ocular cancer management: a narrative review on exploring the potential role of ChatGPT. Front Public Health 2023; 11:1338215. [PMID: 38192545 PMCID: PMC10773849 DOI: 10.3389/fpubh.2023.1338215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
This paper pioneers the exploration of ocular cancer, and its management with the help of Artificial Intelligence (AI) technology. Existing literature presents a significant increase in new eye cancer cases in 2023, experiencing a higher incidence rate. Extensive research was conducted using online databases such as PubMed, ACM Digital Library, ScienceDirect, and Springer. To conduct this review, Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines are used. Of the collected 62 studies, only 20 documents met the inclusion criteria. The review study identifies seven ocular cancer types. Important challenges associated with ocular cancer are highlighted, including limited awareness about eye cancer, restricted healthcare access, financial barriers, and insufficient infrastructure support. Financial barriers is one of the widely examined ocular cancer challenges in the literature. The potential role and limitations of ChatGPT are discussed, emphasizing its usefulness in providing general information to physicians, noting its inability to deliver up-to-date information. The paper concludes by presenting the potential future applications of ChatGPT to advance research on ocular cancer globally.
Collapse
Affiliation(s)
- Saud S. Alotaibi
- Information Systems Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amna Rehman
- Department of Computer Science, Lahore Leads University, Lahore, Pakistan
| | - Muhammad Hasnain
- Department of Computer Science, Lahore Leads University, Lahore, Pakistan
| |
Collapse
|