Tian Z, Man Q, Yang Y, Guan H, Wang Y, Luo R, Wang J. Comparison of rabbit ATLG and ATG for GVHD prophylaxis in hematological malignancies with haploidentical hematopoietic stem cell transplantation.
Ann Hematol 2024;
103:1729-1736. [PMID:
38538977 DOI:
10.1007/s00277-024-05724-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Rabbit anti-human T lymphocyte globulin (ATLG) and anti-thymocyte globulin (ATG) are commonly used for graft-versus-host disease (GVHD) prophylaxis in allogeneic hematopoietic stem cell transplantation (HSCT). Yet, their efficacy and safety have seldom been compared in hematological malignancies with haploidentical HSCT. A retrospective analysis with 28 ATLG (total dosage, 20-30 mg/kg) and 18 ATG (total dosage, 8-10 mg/kg) patients were performed. The cumulative incidences of chronic GVHD and relapse were comparable between both groups. ATLG showed a trend towards a lower acute GVHD incidence (28.6% vs. 44.4%, P = 0.242) and 3-year non-relapse mortality (10.7% vs. 27.8%, P = 0.160), and had a significantly higher 3-year overall survival (OS, 64.3% vs. 33.3%, P = 0.033) and GVHD-free and relapse-free survival (GRFS, 32.1% vs. 11.1%, P = 0.045) compared with ATG. Multivariate Cox regression analysis demonstrated ATLG was independently associated with a favorable OS (hazard ratio [HR] = 0.37, 95% confidence interval [CI]: 0.16-0.86, P = 0.020) and GRFS (HR = 0.51, 95%CI: 0.26-1.00, P = 0.051). Furthermore, ATLG had a lower risk of fever (25.0% vs. 61.1%, P = 0.014) and hemorrhage cystitis (7.1% vs. 38.9%, P = 0.008) than ATG-T. In conclusion, ATLG confers more survival benefit and a better safety profile than ATG and can be used in hematological malignancies with haploidentical HSCT. Prospective designed trials with a larger sample size are warranted to confirm the results in the future.
Collapse