1
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
2
|
|
3
|
Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells 2021; 13:236-259. [PMID: 33959217 PMCID: PMC8080540 DOI: 10.4252/wjsc.v13.i4.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide. Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue. Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology. Heart transplantation usually cannot be relied on, as there is a major discrepancy between the availability of donors and recipients. As a result, heart failure carries a poor prognosis and high mortality rate. As the heart lacks significant endogenous regeneration potential, novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues. This review will discuss past, present, and future clinical trials, factors that influence stem cell therapy outcomes as well as ethical and safety considerations. Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function. This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type, dosing, route of administration, patient parameters and other important variables that contribute to successful stem cell therapy. Nonetheless, the field of stem cell therapeutics continues to advance at an unprecedented pace. We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.
Collapse
Affiliation(s)
| | - Ian White
- Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Diya Grover
- Ross University School of Medicine, St. Michael BB11093, Barbados
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury P3E 3Y9, Ontario, Canada
| |
Collapse
|
4
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
5
|
Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H, Joles JA. Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems. Antioxidants (Basel) 2021; 10:373. [PMID: 33801446 PMCID: PMC7998720 DOI: 10.3390/antiox10030373] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
Collapse
Affiliation(s)
- Joshua J. Scammahorn
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Isabel T. N. Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Eelke M. Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Harry Van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jaap A. Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| |
Collapse
|
6
|
Cheung MM, Jahan N. Can Stem Cells Improve Left Ventricular Ejection Fraction in Heart Failure? A Literature Review of Skeletal Myoblasts and Bone Marrow-Derived Cells. Cureus 2020; 12:e11598. [PMID: 33364119 PMCID: PMC7752736 DOI: 10.7759/cureus.11598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Heart failure is a life-threatening condition that affects millions worldwide and is only expected to get worse with an ageing population. Current treatment regimens rely on medical therapy and heart transplantation as a last resort. Stem cells have been undergoing clinical trials worldwide as a hope for a new and safe clinical treatment. Skeletal myoblasts and bone marrow-derived stem cells are two types of stem cells being tested. The objective is to evaluate the efficacy of these two types of stem cells for heart failure therapy. Data were searched in PubMed using both regular and Medical Subject Heading (MeSH) keywords (stem cells, therapy, heart failure) and then filtered using inclusion/exclusion criteria (language, species, publication date, and age). In total, 31 research articles were reviewed (14 clinical trials, four randomized control trials, nine review articles, one case report, one comparative study, one systematic review, and one categorized as a systematic review and meta-analysis). Both skeletal myoblasts and bone marrow-derived stem cells showed mixed results in improving left ventricular ejection fraction in heart failure patients in the majority of studies. Larger studies need to be done to further investigate the efficacy of stem cells as a therapy for heart failure.
Collapse
Affiliation(s)
- Meghan M Cheung
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nusrat Jahan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Ryan R, Moyse BR, Richardson RJ. Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol 2020; 154:533-548. [PMID: 32926230 PMCID: PMC7609419 DOI: 10.1007/s00418-020-01913-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
The study of heart repair post-myocardial infarction has historically focused on the importance of cardiomyocyte proliferation as the major factor limiting adult mammalian heart regeneration. However, there is mounting evidence that a narrow focus on this one cell type discounts the importance of a complex cascade of cell-cell communication involving a whole host of different cell types. A major difficulty in the study of heart regeneration is the rarity of this process in adult animals, meaning a mammalian template for how this can be achieved is lacking. Here, we review the adult zebrafish as an ideal and unique model in which to study the underlying mechanisms and cell types required to attain complete heart regeneration following cardiac injury. We provide an introduction to the role of the cardiac microenvironment in the complex regenerative process and discuss some of the key advances using this in vivo vertebrate model that have recently increased our understanding of the vital roles of multiple different cell types. Due to the sheer number of exciting studies describing new and unexpected roles for inflammatory cell populations in cardiac regeneration, this review will pay particular attention to these important microenvironment participants.
Collapse
Affiliation(s)
- Rebecca Ryan
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Bethany R Moyse
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Rebecca J Richardson
- C21a, Biomedical Sciences Building, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|