1
|
Staszkiewicz R, Sobański D, Pulka W, Gładysz D, Gadzieliński M, Strojny D, Grabarek BO. Variances in the Expression Profile of Circadian Clock-Related Genes in Astrocytic Brain Tumors. Cancers (Basel) 2024; 16:2335. [PMID: 39001398 PMCID: PMC11240661 DOI: 10.3390/cancers16132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
This study explores the role of circadian clock genes in the progression of astrocytic tumors, a prevalent type of brain tumor. The aim was to assess the expression patterns of these genes in relation to the tumor grade. Using microarray analysis, qRT-PCR, and methylation-specific PCR, we examined gene expression, DNA methylation patterns, and microRNA interactions in tumor samples from 60 patients. Our results indicate that the expression of key circadian clock genes, such as clock circadian regulator (CLOCK), protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), protein kinase AMP-activated non-catalytic subunit beta 1 (PRKAB1), protein kinase AMP-activated non-catalytic subunit beta 2 (PRKAB2), period circadian regulator 1 (PER1), period circadian regulator 2 (PER2) and period circadian regulator 3 (PER3), varies significantly with the tumor grade. Notably, increased CLOCK gene expression and protein levels were observed in higher-grade tumors. DNA methylation analysis revealed that the promoter regions of PER1-3 genes were consistently methylated, suggesting a mechanism for their reduced expression. Our findings also underscore the complex regulatory mechanisms involving miRNAs, such as hsa-miR-106-5p, hsa-miR-20b-5p, and hsa-miR-30d-3p, which impact the expression of circadian clock-related genes. This underscores the importance of circadian clock genes in astrocytic tumor progression and highlights their potential as biomarkers and therapeutic targets. Further research is needed to validate these results and explore their clinical implications.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
| | - Wojciech Pulka
- Department of Neurosurgery, Neurotraumatology and Spinal Surgery, Regional Hospital in Elblag, 82-300 Elblag, Poland;
| | - Dorian Gładysz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Marcin Gadzieliński
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemysl, 37-700 Przemysl, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-054 Rudna Mala, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
| |
Collapse
|
2
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
3
|
Nettnin EA, Nguyen T, Arana S, Barros Guinle MI, Garcia CA, Gibson EM, Prolo LM. Review: therapeutic approaches for circadian modulation of the glioma microenvironment. Front Oncol 2023; 13:1295030. [PMID: 38173841 PMCID: PMC10762863 DOI: 10.3389/fonc.2023.1295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
High-grade gliomas are malignant brain tumors that are characteristically hard to treat because of their nature; they grow quickly and invasively through the brain tissue and develop chemoradiation resistance in adults. There is also a distinct lack of targeted treatment options in the pediatric population for this tumor type to date. Several approaches to overcome therapeutic resistance have been explored, including targeted therapy to growth pathways (ie. EGFR and VEGF inhibitors), epigenetic modulators, and immunotherapies such as Chimeric Antigen Receptor T-cell and vaccine therapies. One new promising approach relies on the timing of chemotherapy administration based on intrinsic circadian rhythms. Recent work in glioblastoma has demonstrated temporal variations in chemosensitivity and, thus, improved survival based on treatment time of day. This may be due to intrinsic rhythms of the glioma cells, permeability of the blood brain barrier to chemotherapy agents, the tumor immune microenvironment, or another unknown mechanism. We review the literature to discuss chronotherapeutic approaches to high-grade glioma treatment, circadian regulation of the immune system and tumor microenvironment in gliomas. We further discuss how these two areas may be combined to temporally regulate and/or improve the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Ella A. Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Thien Nguyen
- Division of Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Cesar A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Laura M. Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| |
Collapse
|
4
|
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.
Collapse
Affiliation(s)
- Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy N Rich
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Petkovic M, Yalçin M, Heese O, Relógio A. Differential expression of the circadian clock network correlates with tumour progression in gliomas. BMC Med Genomics 2023; 16:154. [PMID: 37400829 DOI: 10.1186/s12920-023-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gliomas are tumours arising mostly from astrocytic or oligodendrocytic precursor cells. These tumours are classified according to the updated WHO classification from 2021 in 4 grades depending on molecular and histopathological criteria. Despite novel multimodal therapeutic approaches, the vast majority of gliomas (WHO grade III and IV) are not curable. The circadian clock is an important regulator of numerous cellular processes and its dysregulation had been found during the progression of many cancers, including gliomas. RESULTS In this study, we explore expression patterns of clock-controlled genes in low-grade glioma (LGG) and glioblastoma multiforme (GBM) and show that a set of 45 clock-controlled genes can be used to distinguish GBM from normal tissue. Subsequent analysis identified 17 clock-controlled genes with a significant association with survival. The results point to a loss of correlation strength within elements of the circadian clock network in GBM compared to LGG. We further explored the progression patterns of mutations in LGG and GBM, and showed that tumour suppressor APC is lost late both in LGG and GBM. Moreover, HIF1A, involved in cellular response to hypoxia, exhibits subclonal losses in LGG, and TERT, involved in the formation of telomerase, is lost late in the GBM progression. By examining multi-sample LGG data, we find that the clock-controlled driver genes APC, HIF1A, TERT and TP53 experience frequent subclonal gains and losses. CONCLUSIONS Our results show a higher level of disrgulation at the gene expression level in GBM compared to LGG, and indicate an association between the differentially expressed clock-regulated genes and patient survival in both LGG and GBM. By reconstructing the patterns of progression in LGG and GBM, our data reveals the relatively late gains and losses of clock-regulated glioma drivers. Our analysis emphasizes the role of clock-regulated genes in glioma development and progression. Yet, further research is needed to asses their value in the development of new treatments.
Collapse
Affiliation(s)
- Marina Petkovic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany.
| |
Collapse
|
6
|
Zhang R, Wang DM, Liu YL, Tian ML, Zhu L, Chen J, Zhang J. Symptom management in adult brain tumours: A literature review. Nurs Open 2023. [PMID: 37120840 DOI: 10.1002/nop2.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
AIM To review the literature related to symptom management, clinical significance and related theoretical framework systems in adult patients with brain tumours. BACKGROUND As understanding of symptoms or symptom clusters and underlying biologic mechanisms has grown, it is apparent that symptom science is moving forward. Although some progress has been made in the symptom science of solid tumours such as breast and lung neoplasms, insufficient attention has been paid to symptom management for patients suffering from brain tumours. Further research is needed to achieve effective symptom management for these patients. DESIGN A literature review with a systematic search of symptom management in adult brain tumours. METHODS Electronic data bases were searched to obtain relevant published literature on symptom management in adults with brain tumours. This was then analysed and a synthesis of relevant findings is presented. FINDINGS Four significant general themes relating to symptom management of brain tumours in adults were identified: (1) The potential theoretical foundation related to symptom management was revealed. (2) Widely accepted validated scales or questionnaires for the assessment of single symptoms or symptom clusters were recommended. (3) Several symptom clusters and the underlying biologic mechanisms have been reported. (4) Specific symptom interventions for adults with brain tumours were collected and classified as evidence-based or insufficient evidence. CONCLUSION There are still many challenges in the effective management of symptoms in adults with brain tumours. The guiding role of theoretical frameworks or models related to symptom management should be utilized in future research. Using the concept of symptom clustering for research into symptoms found in patients with brain tumours, exploring common biological mechanisms for specific symptom clusters and making full use of modern big data resources to build a strong evidence base for an effective intervention or management program may inform the management of symptoms among these patients leading to better results. NO PATIENT OR PUBLIC CONTRIBUTION This is a literature review. IMPLICATIONS FOR SYMPTOM MANAGEMENT The ultimate goal is obviously not only improving the survival rate of patients with brain tumours, but also enhancing their quality of life. Several important findings from our review include the theoretical foundations, validated assessment tools, the assessment of symptom clusters and the underlying biologic mechanism, and the identification of the evidence base for symptom interventions. These are of relevance for managers, researchers and practitioners and may function as a reference to help the effective symptom management for adults with brain tumours.
Collapse
Affiliation(s)
- Rong Zhang
- School of Nursing, Wuhan University, Wuhan, China
- Department of Neuro-Oncology Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong-Mei Wang
- Department of Neuro-Oncology Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yong-Li Liu
- Nursing Department, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Man-Li Tian
- College of Nursing, Hubei University of Medicine, Shiyan, China
| | - Ling Zhu
- Department of Neuro-Oncology Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Chen
- Department of Neuro-Oncology Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Wu Z, Hu H, Zhang Q, Wang T, Li H, Qin Y, Ai X, Yi W, Wei X, Gao W, Ouyang C. Four circadian rhythm-related genes predict incidence and prognosis in hepatocellular carcinoma. Front Oncol 2022; 12:937403. [PMID: 36439444 PMCID: PMC9691441 DOI: 10.3389/fonc.2022.937403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/12/2022] [Indexed: 10/13/2023] Open
Abstract
Circadian dysregulation can be involved in the development of malignant tumors, though its relationship with the progression of hepatocellular carcinoma is not yet fully understood. We identified genes related to circadian rhythms from the Cancer Genome Atlas (TCGA), measured gene expression, and conducted genomic difference analysis to construct a circadian rhythm-related signature. The resulting prognosis model proved to be an effective biomarker, as demonstrated by Kaplan-Meier survival analysis for both the training (n = 370, P = 2.687e-10) and external validation cohorts (n = 230, P = 1.45e-02). Further, we found that patients considered 'high risk', with an associated poor prognosis, displayed elevated levels of immune checkpoint genes and immune filtration. We also conducted functional enrichment, which indicated that the risk model showed a significant positive correlation with certain malignant phenotypes, including G2M checkpoint, MYC targets, and the MTORC1 signaling pathway. In summary, we identified a novel circadian rhythm-related signature allowing assessment of prognosis for hepatocellular carcinoma patients, and further can be used to predict immune infiltration sensitivity.
Collapse
|
8
|
Zolotovskaia MA, Kovalenko MA, Tkachev VS, Simonov AM, Sorokin MI, Kim E, Kuzmin DV, Karademir-Yilmaz B, Buzdin AA. Next-Generation Grade and Survival Expression Biomarkers of Human Gliomas Based on Algorithmically Reconstructed Molecular Pathways. Int J Mol Sci 2022; 23:7330. [PMID: 35806337 PMCID: PMC9266372 DOI: 10.3390/ijms23137330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.
Collapse
Affiliation(s)
- Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Max A. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | | | - Alexander M. Simonov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
| | - Maxim I. Sorokin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
| | - Ella Kim
- Clinic for Neurosurgery, Laboratory of Experimental Neurooncology, Johannes Gutenberg University Medical Centre, Langenbeckstrasse 1, 55124 Mainz, Germany;
| | - Denis V. Kuzmin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Betul Karademir-Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey;
| | - Anton A. Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
9
|
Tian R, Li Y, Shu M. Circadian Regulation Patterns With Distinct Immune Landscapes in Gliomas Aid in the Development of a Risk Model to Predict Prognosis and Therapeutic Response. Front Immunol 2022; 12:797450. [PMID: 35069579 PMCID: PMC8770819 DOI: 10.3389/fimmu.2021.797450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
Circadian disruption in tumorigenesis has been extensively studied, but how circadian rhythm (CR) affects the formation of tumor microenvironment (TME) and the crosstalk between TME and cancer cells is largely unknown, especially in gliomas. Herein, we retrospectively analyzed transcriptome data and clinical parameters of glioma patients from public databases to explore circadian rhythm-controlled tumor heterogeneity and characteristics of TME in gliomas. Firstly, we pioneered the construction of a CR gene set collated from five datasets and review literatures. Unsupervised clustering was used to identify two CR clusters with different CR patterns on the basis of the expression of CR genes. Remarkably, the CR cluster-B was characterized by enriched myeloid cells and activated immune-related pathways. Next, we applied principal component analysis to construct a CRscore to quantify CR patterns of individual tumors, and the function of the CRscore in prognostic prediction was further verified by univariate and multivariate regression analyses in combination with a nomogram. The CRscore could not only be an independent factor to predict prognosis of glioma patients but also guide patients to choose suitable treatment strategies: immunotherapy or chemotherapy. A glioma patient with a high CRscore might respond to immune checkpoint blockade, whereas one with a low CRscore could benefit from chemotherapy. In this study, we revealed that circadian rhythms modulated tumor heterogeneity, TME diversity, and complexity in gliomas. Evaluating the CRscore of an individual tumor would contribute to gaining a greater understanding of the tumor immune status of each patient, enhancing the accuracy of prognostic prediction, and suggesting more effective treatment options.
Collapse
Affiliation(s)
- Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Ministry of Education (MOE) & Ministry of Health (MOH) Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Jarabo P, de Pablo C, González-Blanco A, Casas-Tintó S. Circadian Gene cry Controls Tumorigenesis through Modulation of Myc Accumulation in Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23042043. [PMID: 35216153 PMCID: PMC8874709 DOI: 10.3390/ijms23042043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GB) is the most frequent malignant brain tumor among adults and currently there is no effective treatment. This aggressive tumor grows fast and spreads through the brain causing death in 15 months. GB cells display a high mutation rate and generate a heterogeneous population of tumoral cells that are genetically distinct. Thus, the contribution of genes and signaling pathways relevant for GB progression is of great relevance. We used a Drosophila model of GB that reproduces the features of human GB and describe the upregulation of the circadian gene cry in GB patients and in a Drosophila GB model. We studied the contribution of cry to the expansion of GB cells and the neurodegeneration and premature death caused by GB, and we determined that cry is required for GB progression. Moreover, we determined that the PI3K pathway regulates cry expression in GB cells, and in turn, cry is necessary and sufficient to promote Myc accumulation in GB. These results contribute to understanding the mechanisms underlying GB malignancy and lethality, and describe a novel role of Cry in GB cells.
Collapse
|
11
|
Zhou J, Wang J, Zhang X, Tang Q. New Insights Into Cancer Chronotherapies. Front Pharmacol 2021; 12:741295. [PMID: 34966277 PMCID: PMC8710512 DOI: 10.3389/fphar.2021.741295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiechen Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaozhao Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
12
|
Najari Hanjani P, Golalipour M. Circadian Oscillation of Natural Antisense Transcripts Related to Human Core Clock Genes. Rep Biochem Mol Biol 2021; 10:471-476. [PMID: 34981025 PMCID: PMC8718779 DOI: 10.52547/rbmb.10.3.471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circadian clocks are autonomous intracellular oscillators that synchronize metabolic and physiological processes with the external signals. So, misalignment of environmental and endogenous circadian rhythms leads to disruption of biological activities in living organisms. Noncoding transcripts including antisense RNAs are an important component of the molecular clocks. Commonly, the antisense transcripts are involved in the regulation of gene expression. PER2AS and CRY1AS are the only known Natural Antisense Transcripts (NAT) among the core clock genes, which overlap with the PER2 and CRY1 genes, respectively. In this study, we hypothesized that PER2AS and CRY1AS like the other clock genes, exhibit the oscillatory behavior in a 24-hour period and affect the expression of PER2 and CRY1. METHODS First, the A549 cell line was cultured under standard conditions. After horse serum shock, RNA extraction and cDNA synthesis was performed; then the expression fluctuations of PER2AS, CRY1AS, PER2, and CRY1 were measured with Real-time PCR. RESULTS Our result showed that PER2AS and CRY1AS had similar oscillation patterns with their sense strand during 24-hour period. CONCLUSION Therefore, we suggested that PER2AS and CRY1AS transcripts probably by preventing the interaction of miRNAs with PER2 and CRY1 mRNAs, influence the expression of them, positively.
Collapse
Affiliation(s)
| | - Masoud Golalipour
- Cellular and Molecular Research center, Golestan university of medical sciences, Gorgan, Iran.
- Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
13
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
14
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
15
|
Lin MR, Chen PY, Wang HC, Lin PC, Lee HC, Chiu HY. Prevalence of sleep disturbances and their effects on quality of life in adults with untreated pituitary tumor and meningioma. J Neurooncol 2021; 154:179-186. [PMID: 34304334 DOI: 10.1007/s11060-021-03811-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore the prevalence of sleep disturbances and their effects on quality of life in adults with pituitary tumor or meningioma. METHODS This prospective study included 33 and 44 patients with pituitary tumor and meningioma, respectively. All participants completed a series of valid questionnaires for assessing sleep and quality of life; all participants wore 3-day actigraph prior to related treatment. The actigraph-derived sleep parameters included total sleep time, sleep onset latency, wake after sleep onset, sleep efficiency, and dichotomy index (I < O) value. RESULTS The prevalence of insomnia, excessive daytime sleepiness, and poor sleep quality was 46.8%, 6.5%, and 81.8%, respectively. The differences in these sleep parameters between patients with pituitary tumor and those with meningioma were nonsignificant. Only 27 participants completed the actigraphic assessments. The mean I < O value was 95.99%, and nearly 60% participants exhibited circadian rhythm disruption. Sleep quality was the only sleep variable independently correlated with preoperative quality of life, even after adjustments for confounders (B = 0.80, p = 0.02). CONCLUSIONS Insomnia, poor sleep quality, and disrupted circadian rhythm are highly prevalent in adults with untreated pituitary tumor or meningioma. Sleep quality independently correlated with quality of life. We indirectly confirmed that tumor location may not be a possible cause of sleep changes.
Collapse
Affiliation(s)
- Mei-Ru Lin
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery and Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung branch, Keelung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery Organization, National Taiwan University Hospital, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery Organization, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Pei-Ching Lin
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yean Chiu
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan.
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Abstract
Circadian rhythm pathway was demonstrated pathological functions in glioma on single-gene level. We aim to depict the multi-omics landscape of circadian rhythm pathway alteration in glioma using bioinformatic analyses. Multi-omics data were obtained from “cBioPortal” database. Comparisons were done regarding clinical parameters, differential-expressed genes and functional annotations. A pathway index was generated using the expression data from TCGA and GTEx to quantify the general alteration level of the pathway with clinical association of circadian rhythm pathway index explored. A total of 30 genes were mapped on the circadian rhythm pathway. Genomic profile ofcircadian rhythm pathway genes exhibited distinct characteristics on multiple levels between lower grade glioma (LGG) and glioblastoma multiforme (GBM) patients. LGG patients presented significantly higher frequencies of multi-omics mutations, as well as significant clinical relevance, on single-gene level. Differential-expressed genes between LGG and GBM patients revealed different functions between subtypes that related to the alteration of circadian rhythm pathway. LGG have significantly higher pathway index than normal brain tissue, while GBM significantly lower than normal tissue (P < 0.01), indicating distinctly altered circadian pathway in LGG. Circadian rhythm pathway index correlated with the prognosis of LGG, but not GBM, patients, with higher score indicating better survival outcome (LGG: HR = 0.39, 95% CI: 0.26 − 0.59, P < 0.001). In conclusion, LGG have more multi-omics alterations of circadian rhythm pathway than GBM. Quantification of circadian rhythm pathway using pathway index demonstrated hyperactivated pathway status in LGG and correlated with the prognosis of LGG patients.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| | - Jiahui Xu
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| | - Lijun Chen
- Department of Pediatrics, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojie Lin
- Department of Internal Medicine, Guang Dong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Department of Internal Medicine, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Gao Y, Wu Y, Zhang N, Yuan H, Wang F, Xu H, Yu J, Ma J, Hou S, Cao X. IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87‑MG cells. Mol Med Rep 2021; 23:354. [PMID: 33760141 PMCID: PMC7974315 DOI: 10.3892/mmr.2021.11993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Isocitrate dehydrogenase1 (IDH1) mutation is the most important genetic change in glioma. The most common IDH1 mutation results in the amino acid substitution of arginine 132 (Arg/R132), which is located at the active site of the enzyme. IDH1 Arg132His (R132H) mutation can reduce the proliferative rate of glioma cells. Numerous diseases follow circadian rhythms, and there is growing evidence that circadian disruption may be a risk factor for cancer in humans. Dysregulation of the circadian clock serves an important role in the development of malignant tumors, including glioma. Brain-Muscle Arnt-Like protein 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) are the main biological rhythm genes. The present study aimed to further study whether there is an association between IDH1 R132H mutation and biological rhythm in glioma, and whether this affects the occurrence of glioma. The Cancer Genome Atlas (TCGA) database was used to detect the expression levels of the biological rhythm genes BMAL1 and CLOCK in various types of tumor. Additionally, U87-MG cells were infected with wild-type and mutant IDH1 lentiviruses. Colony formation experiments were used to detect cell proliferation in each group, cell cycle distribution was detected by flow cytometry and western blotting was used to detect the expression levels of wild-type and mutant IDH1, cyclins, biological rhythm genes and Smad signaling pathway-associated genes in U87-MG cells. TCGA database results suggested that BMAL1 and CLOCK were abnormally expressed in glioma. Cells were successfully infected with wild-type and mutant IDH1 lentiviruses. Colony formation assay revealed decreased cell proliferation in the IDH1 R132H mutant group. The cell cycle distribution detected by flow cytometry indicated that IDH1 gene mutation increased the G1 phase ratio and decreased the S phase ratio in U87-MG cells. The western blotting results demonstrated that IDH1 R132H mutation decreased the expression levels of the S phase-associated proteins Cyclin A and CDK2, and increased the expression levels of the G1 phase-associated proteins Cyclin D3 and CDK4, but did not significantly change the expression levels of the G2/M phase-associated protein Cyclin B1. The expression levels of the positive and negative rhythm regulation genes BMAL1, CLOCK, period (PER s (PER1, 2 and 3) and cryptochrom (CRY)s (CRY1 and 2) were significantly decreased, those of the Smad signaling pathway-associated genes Smad2, Smad3 and Smad2-3 were decreased, and those of phosphorylated (p)-Smad2, p-Smad3 and Smad4 were increased. Therefore, the present results suggested that the IDH1 R132H mutation may alter the cell cycle and biological rhythm genes in U87-MG cells through the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yongying Gao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ningmei Zhang
- Department of Pathology, Tumor Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hongmei Yuan
- Functional Department, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, P.R. China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jie Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
18
|
Wang Z, Su G, Dai Z, Meng M, Zhang H, Fan F, Liu Z, Zhang L, Weygant N, He F, Fang N, Zhang L, Cheng Q. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif 2021; 54:e12988. [PMID: 33442944 PMCID: PMC7941241 DOI: 10.1111/cpr.12988] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression. Materials and Methods Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single‐cell RNA‐Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony‐forming assay and flow cytometry. Results The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high‐risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high‐risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase. Conclusions Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan‐cancer.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guanhua Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Ning Fang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Walker WH, Bumgarner JR, Walton JC, Liu JA, Meléndez-Fernández OH, Nelson RJ, DeVries AC. Light Pollution and Cancer. Int J Mol Sci 2020; 21:E9360. [PMID: 33302582 PMCID: PMC7764771 DOI: 10.3390/ijms21249360] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Abstract
For many individuals in industrialized nations, the widespread adoption of electric lighting has dramatically affected the circadian organization of physiology and behavior. Although initially assumed to be innocuous, exposure to artificial light at night (ALAN) is associated with several disorders, including increased incidence of cancer, metabolic disorders, and mood disorders. Within this review, we present a brief overview of the molecular circadian clock system and the importance of maintaining fidelity to bright days and dark nights. We describe the interrelation between core clock genes and the cell cycle, as well as the contribution of clock genes to oncogenesis. Next, we review the clinical implications of disrupted circadian rhythms on cancer, followed by a section on the foundational science literature on the effects of light at night and cancer. Finally, we provide some strategies for mitigation of disrupted circadian rhythms to improve health.
Collapse
Affiliation(s)
- William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Jennifer A. Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
20
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
21
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
22
|
Jeon MS, Dhillon HM, Agar MR. Sleep disturbance of adults with a brain tumor and their family caregivers: a systematic review. Neuro Oncol 2018; 19:1035-1046. [PMID: 28340256 DOI: 10.1093/neuonc/nox019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high incidence and psychophysiological morbidities of sleep disturbance in cancer have been increasingly recognized. Yet, more detailed understanding of sleep disturbance and options for management have been neglected areas in both clinical care and research. Brain tumor patients have been particularly overlooked. A systematic search of the literature from 1990 to 2015 was performed to review sleep disturbance in adults with primary or secondary brain tumor and their family caregivers. Fifty eligible studies were identified, of which 12 focused on sleep, 37 reported sleep items within a health-related quality of life measure and 1 reported caregivers' sleep. No sleep intervention has been developed or tested for brain tumor patients. Sleep disturbance and somnolence were frequently reported as the most severely rated symptoms within health-related quality of life across the disease course or treatments, along with fatigue. However, sleep-focused studies yielded inconsistent results in small samples of mostly benign brain tumors in long-term remission from total tumor resection. The research using standardized, multifaceted sleep assessments, particularly in patients with malignant brain tumor and caregivers who are undergoing treatment, is seriously lacking. A more systematic examination of sleep disturbance is warranted to inform the development of better symptom management programs in this population.
Collapse
Affiliation(s)
- Megan Soohwa Jeon
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia; Centre for Medical Psychology & Evidence-based Decision-making, University of Sydney, Sydney, Australia; Centre for Cardiovascular and Chronic Care, Faculty of Health, University of Technology Sydney, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Haryana M Dhillon
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia; Centre for Medical Psychology & Evidence-based Decision-making, University of Sydney, Sydney, Australia; Centre for Cardiovascular and Chronic Care, Faculty of Health, University of Technology Sydney, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Meera R Agar
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia; Centre for Medical Psychology & Evidence-based Decision-making, University of Sydney, Sydney, Australia; Centre for Cardiovascular and Chronic Care, Faculty of Health, University of Technology Sydney, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| |
Collapse
|
23
|
Fan W, Caiyan L, Ling Z, Jiayun Z. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas. Oncotarget 2017; 8:77809-77818. [PMID: 29100427 PMCID: PMC5652816 DOI: 10.18632/oncotarget.20835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.
Collapse
Affiliation(s)
- Wang Fan
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Li Caiyan
- The Center of Cancer Prevention, The Second People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhu Ling
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhao Jiayun
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| |
Collapse
|
24
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Front Physiol 2017; 8:352. [PMID: 28620312 PMCID: PMC5451860 DOI: 10.3389/fphys.2017.00352] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
Gliomas cells are the site of numerous metabolic and thermodynamics abnormalities with an increasing entropy rate which is characteristic of irreversible processes driven by changes in Gibbs energy, heat production, intracellular acidity, membrane potential gradient, and ionic conductance. We focus our review on the opposing interactions observed in glioma between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In gliomas, WNT/beta-catenin pathway is upregulated while PPAR gamma is downregulated. Upregulation of WNT/beta-catenin signaling induces changes in key metabolic enzyme that modify their thermodynamics behavior. This leads to activation pyruvate dehydrogenase kinase 1(PDK-1) and monocarboxylate lactate transporter 1 (MCT-1). Consequently, phosphorylation of PDK-1 inhibits pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and in TCA (tricarboxylic acid) cycle. This leads to aerobic glycolysis despite the availability of oxygen, named Warburg effect. Cytoplasmic pyruvate is, in major part, converted into lactate. The WNT/beta-catenin pathway induces also the transcription of genes involved in cell proliferation, cell invasiveness, nucleotide synthesis, tumor growth, and angiogenesis, such as c-Myc, cyclin D1, PDK. In addition, in gliomas cells, PPAR gamma is downregulated, leading to a decrease in insulin sensitivity and an increase in neuroinflammation. Moreover, PPAR gamma contributes to regulate some key circadian genes. Abnormalities in the regulation of circadian rhythms and dysregulation in circadian clock genes are observed in gliomas. Circadian rhythms are dissipative structures, which play a key role in far-from-equilibrium thermodynamics through their interactions with WNT/beta-catenin pathway and PPAR gamma. In gliomas, metabolism, thermodynamics, and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, Institut National de la Santé et de la Recherche Médicale U1084, University of PoitiersPoitiers, France
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR Centre National de la Recherche Scientifique 7348, SP2MIFuturoscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
- CHU Amiens Picardie, Université Picardie Jules VerneAmiens, France
| |
Collapse
|
25
|
CLOCK Promotes Endothelial Damage by Inducing Autophagy through Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9591482. [PMID: 28058089 PMCID: PMC5183792 DOI: 10.1155/2016/9591482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022]
Abstract
A number of recent studies have implicated that autophagy was activated by reactive oxygen species (ROS). Our previous report indicated that CLOCK increased the accumulation of ROS under hypoxic conditions. In this study, we investigated the mechanisms by which CLOCK mediated endothelial damage, focusing on the involvement of oxidative damage and autophagy. Overexpression of CLOCK in human umbilical vein endothelial cells (HUVECs) showed inhibition of cell proliferation and higher autophagosome with an increased expression of Beclin1 and LC3-I/II under hypoxic conditions. In contrast, CLOCK silencing reversed these effects. Interestingly, pretreatment with 3-methyladenine (3-MA) resulted in the attenuation of CLOCK-induced cell autophagy and but did not influence the production of intracellular reactive oxygen species (ROS). Furthermore, Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid-disodium salt), a ROS scavenger, significantly attenuated CLOCK-induced cell autophagy. In addition, we found that overexpression of CLOCK had no significant effects on the production of ROS and expression of Beclin1 and LC3-I/II under normoxic conditions in HUVEC. In this present investigation, our results suggested a novel mechanism of action of CLOCK in HUVECs, opening up the possibility of targeting CLOCK for the treatment of vascular diseases.
Collapse
|
26
|
hCLOCK Causes Rho-Kinase-Mediated Endothelial Dysfunction and NF-κB-Mediated Inflammatory Responses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:671839. [PMID: 26583060 PMCID: PMC4637096 DOI: 10.1155/2015/671839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
Abstract
Background. The human Circadian Locomotor Output Cycle protein Kaput (CLOCK) gene was originally discovered as a regulator of essential human daily rhythms. This seemingly innocuous gene was then found to be associated with a multitude of human malignancies, via several biochemical pathways. We aimed to further investigate the role of hCLOCK in the hypoxia-oxidative stress response system at the biochemical level. Methods. Expression levels of Rho GTPases were measured in normoxic and hypoxic states. The effect of hCLOCK on the hypoxic response was evaluated with the use of a retroviral shRNA vector system, a Rho inhibitor, and a ROS scavenger by analyzing expression levels of hCLOCK, Rho GTPases, and NF-κB pathway effectors. Finally, in vitro ROS production and tube formation in HUVECs were assessed. Results. Hypoxia induces ROS production via hCLOCK. hCLOCK activates the RhoA and NF-κB signaling pathways. Conversely, inhibition of hCLOCK deactivates these pathways. Furthermore, inhibition of RhoA or decreased levels of ROS attenuate these pathways, but inhibition of RhoA does not lead to decreased levels of ROS. Overall findings show that hypoxia increases the expression of hCLOCK, which leads to ROS production, which then activates the RhoA and NF-κB pathways. Conclusion. Our findings suggest that hypoxic states induce vascular oxidative damage and inflammation via hCLOCK-mediated production of ROS, with subsequent activation of the RhoA and NF-κB pathways.
Collapse
|
27
|
Tsang SY, Mei L, Wan W, Li J, Li Y, Zhao C, Ding X, Pun FW, Hu X, Wang J, Zhang J, Luo R, Cheung ST, Leung GKK, Poon WS, Ng HK, Zhang L, Xue H. Glioma Association and Balancing Selection of ZFPM2. PLoS One 2015. [PMID: 26207917 PMCID: PMC4514883 DOI: 10.1371/journal.pone.0133003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350), non-glioma cancer (n = 354) and healthy control (n = 463) by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69) of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016), and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005) or non-glioma cancers (P = 0.020). ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002), with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028). In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.
Collapse
Affiliation(s)
- Shui-Ying Tsang
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lingling Mei
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Li
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cunyou Zhao
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaofan Ding
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Frank W. Pun
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoxia Hu
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junyi Zhang
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongcheng Luo
- Cancer Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siu-Tim Cheung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Gilberto K. K. Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (HX); (LZ)
| | - Hong Xue
- Division of Life Science and Applied Genomics Centre, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail: (HX); (LZ)
| |
Collapse
|
28
|
Wang F, Li C, Yongluo, Chen L. The Circadian Gene Clock Plays an Important Role in Cell Apoptosis and the DNA Damage Response In Vitro. Technol Cancer Res Treat 2015; 15:480-6. [PMID: 25976934 DOI: 10.1177/1533034615585433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/30/2015] [Indexed: 12/30/2022] Open
Abstract
The Clock gene, an indispensable component of the circadian clock, not only modulates circadian oscillations but also regulates organismal function. We examined whether silencing the expression of the human Clock gene in glioma cells influences cell growth and induces apoptosis after irradiation. Silencing the expression of Clock in a human glioma cell line (U87MG), but not in a control glioma cell line, resulted in increased apoptosis and cell cycle arrest. Moreover, silencing Clock expression altered the expression of apoptosis-related genes. The protein levels of c-Myc and Cyclin B1 were downregulated, but those of p53 were upregulated, in human Clock-silenced U87MG cells compared with control cells. Our results suggest that the circadian gene human Clock may play an important role in carcinogenesis by inhibiting apoptotic cell death via attenuating proapoptotic signaling.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, China
| | - Caiyan Li
- The Center of Cancer Prevention, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yongluo
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, China
| | - Lvan Chen
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
29
|
Wang Y, Qian R, Sun N, Lu C, Chen Z, Hua L. Circadian gene hClock enhances proliferation and inhibits apoptosis of human colorectal carcinoma cells in vitro and in vivo. Mol Med Rep 2015; 11:4204-10. [PMID: 25625359 PMCID: PMC4394946 DOI: 10.3892/mmr.2015.3247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most prevalent types of malignancy-associated mortality worldwide. Previous studies have demonstrated that amplification and overexpression of the human circadian locomotor output cycles kaput gene (hClock) was closely associated with a high risk for CRC as well as poor prognosis in CRC patients. However, the underlying molecular mechanisms of CRC remain to be fully elucidated. In the present study, hClock was exogenously overexpressed in the CRC cell line SW480 via infection of a lentivirus vector expressing hClock; in addition, a lentivirus vector-based RNA interference approach, using short hairpin RNA, was performed in order to knockdown hClock in SW620 cells. The results showed that upregulation of hClock promoted proliferation and inhibited apoptosis in SW480 cells in vitro and in vivo, while downregulation of hClock inhibited SW620 cell proliferation and accelerated apoptosis in vitro. Upregulation of hClock enhanced the activity of the anti-apoptotic gene phosphorpylated (p-) AKT and inhibited the expression of the pro-apoptotic gene B cell lymphoma-2 (Bcl-2)-associated X protein and Bcl-2 homology 3 interacting domain death agonist. Furthermore, targeted inhibition of hClock activity reduced p-AKT expression. In conclusion, the results of the present study suggested that the circadian gene hClock promoted CRC progression and inhibit tumor cell apoptosis in vitro and in vivo, while silencing hClock was able to reverse this effect.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ning Sun
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zongyou Chen
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Luchun Hua
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
30
|
Li A, Lin X, Tan X, Yin B, Han W, Zhao J, Yuan J, Qiang B, Peng X. Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett 2013; 587:2455-60. [PMID: 23792158 DOI: 10.1016/j.febslet.2013.06.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 01/01/2023]
Abstract
Although the roles of circadian Clock genes and microRNAs in tumorigenesis have been profoundly studied, mechanisms of cross-talk between them in regulation of gliomagenesis are poorly understood. Here we show that the expression level of CLOCK is significantly increased in high-grade human glioma tissues and glioblastoma cell lines. In contrast miR-124 is attenuated in similar samples. Further studies show that Clock is a direct target of miR-124, and either restoration of miR-124 or silencing of CLOCK can reduce the activation of NF-κB. In conclusion, we suggest that as a target of glioma suppressor miR-124, CLOCK positively regulates glioma proliferation and migration by reinforcing NF-κB activity.
Collapse
Affiliation(s)
- Aihua Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | |
Collapse
|