1
|
Lan M, Ren Z, Cheng C, Li G, Yang F. Small extracellular vesicles detection using dielectrophoresis-based microfluidic chip for diagnosis of breast cancer. Biosens Bioelectron 2024; 259:116382. [PMID: 38749284 DOI: 10.1016/j.bios.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/22/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 μL of sample, achieved a limit of detection (LOD) of 161 particles/μL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.
Collapse
Affiliation(s)
- Mei Lan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Szymborski TR, Czaplicka M, Nowicka AB, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips. BIOSENSORS 2022; 12:681. [PMID: 36140065 PMCID: PMC9496591 DOI: 10.3390/bios12090681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The detection of freely circulating cancer cells (CTCs) is one of the greatest challenges of modern medical diagnostics. For several years, there has been increased attention on the use of surface-enhanced Raman spectroscopy (SERS) for the detection of CTCs. SERS is a non-destructive, accurate and precise technique, and the use of special SERS platforms even enables the amplification of weak signals from biological objects. In the current study, we demonstrate the unique arrangement of the SERS technique combined with the deposition of CTCs cells on the surface of the SERS platform via a dielectrophoretic effect. The appropriate frequencies of an alternating electric field and a selected shape of the electric field can result in the efficient deposition of CTCs on the SERS platform. The geometry of the microfluidic chip, the type of the cancer cells and the positive dielectrophoretic phenomenon resulted in the trapping of CTCs on the surface of the SERS platform. We presented results for two type of breast cancer cells, MCF-7 and MDA-MB-231, deposited from the 0.1 PBS solution. The limit of detection (LOD) is 20 cells/mL, which reflects the clinical potential and usefulness of the developed approach. We also provide a proof-of-concept for these CTCs deposited on the SERS platform from blood plasma.
Collapse
Affiliation(s)
- Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B. Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. Anal Bioanal Chem 2021; 413:2007-2020. [PMID: 33507352 DOI: 10.1007/s00216-021-03169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational method successfully applied in analytical chemistry, molecular biology and medical diagnostics. In this article, we demonstrate the combination of the negative dielectrophoretic (nDEP) phenomenon and a flexible surface-enhanced Raman platform for quick isolation (3 min), concentration and label-free identification of bacteria. The platform ensures a strong enhancement factor, high stability and reproducibility for the SERS response of analyzed samples. By introducing radial dielectrophoretic forces directed at the SERS platform, we can efficiently execute bacterial cell separation, concentration and deposition onto the SERS-active surface, which simultaneously works as a counter electrode and thus enables such hybrid DEP-SERS device vibration-based detection. Additionally, we show the ability of our DEP-SERS system to perform rapid, cultivation-free, direct detection of bacteria in urine and apple juice samples. The device provides new opportunities for the detection of pathogens.
Collapse
|
5
|
Zhang Y, Wang S, Chen J, Yang F, Li G. Separation of Macrophages Using a Dielectrophoresis-Based Microfluidic Device. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4207-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Dielectric Characterization and Separation Optimization of Infiltrating Ductal Adenocarcinoma via Insulator-Dielectrophoresis. MICROMACHINES 2020; 11:mi11040340. [PMID: 32218322 PMCID: PMC7230867 DOI: 10.3390/mi11040340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
The dielectrophoretic separation of infiltrating ductal adenocarcinoma cells (ADCs) from isolated peripheral blood mononuclear cells (PBMCs) in a ~1.4 mm long Y-shaped microfluidic channel with semi-circular insulating constrictions is numerically investigated. In this work, ADCs (breast cancer cells) and PBMCs' electrophysiological properties were iteratively extracted through the fitting of a single-shell model with the frequency-conductivity data obtained from AC microwell experiments. In the numerical computation, the gradient of the electric field required to generate the necessary dielectrophoretic force within the constriction zone was provided through the application of electric potential across the whole fluidic channel. By adjusting the difference in potentials between the global inlet and outlet of the fluidic device, the minimum (effective) potential difference with the optimum particle transmission probability for ADCs was found. The radius of the semi-circular constrictions at which the effective potential difference was swept to obtain the optimum constriction size was also obtained. Independent particle discretization analysis was also conducted to underscore the accuracy of the numerical solution. The numerical results, which were obtained by the integration of fluid flow, electric current, and particle tracing module in COMSOL v5.3, reveal that PBMCs can be maximally separated from ADCs using a DC power source of 50 V. The article also discusses recirculation or wake formation behavior at high DC voltages (>100 V) even when sorting of cells are achieved. This result is the first step towards the production of a supplementary or confirmatory test device to detect early breast cancer non-invasively.
Collapse
|
7
|
Li G, Tang W, Yang F. Cancer Liquid Biopsy Using Integrated Microfluidic Exosome Analysis Platforms. Biotechnol J 2020; 15:e1900225. [PMID: 32032977 DOI: 10.1002/biot.201900225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Liquid biopsies serve as both powerful noninvasive diagnostic tools for early cancer screening and prognostic tools for monitoring cancer progression and treatment efficacy. Exosomes are promising biomarkers for liquid biopsies, since these nano-sized extracellular vesicles (EVs) enrich proteins, lipids, mRNAs, and miRNAs from cells of origin, including cancer cells. Although exosomes are abundantly present in various bodily fluids, conventional exosome isolation and detection methods that rely on benchtop equipment are time-consuming, expensive, and involve complicated non-portable procedures. As an alternative, recently developed microfluidic platforms can perform effective exosome separation and detection for liquid biopsies using a single device. Such methods offer advantages of integrity, speed, cost-efficiency, and portability over conventional benchtop and early microfluidic-based single-functional methods which can only separate or detect exosomes separately. These advances have made exosome-based point-of-care (POC) applications possible. This review outlines recent integrated microfluidic-based exosomal detection strategies to guide future development of such devices for use in liquid biopsies for early cancer screening, prognostic monitoring, and other potential POC applications.
Collapse
Affiliation(s)
- Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Yang F, Zhang Y, Cui X, Fan Y, Xue Y, Miao H, Li G. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device. Biotechnol J 2018; 14:e1800181. [DOI: 10.1002/biot.201800181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Ying Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
- Department of Pediatrics; The First Hospital of Jilin University; Jilin University; Changchun 130021 China
| | - Xi Cui
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Yutong Fan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Ying Xue
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Haipeng Miao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; 2699 Qianjin Street Changchun 130012 China
- National Engineering Laboratory for AIDS Vaccine; School of Life Sciences; Jilin University; Changchun 130012 China
| |
Collapse
|
9
|
LI CHIYU, LI WANG, GENG CHUNYANG, REN HAIJUN, YU XIAOHUI, LIU BO. MICROFLUIDIC CHIP FOR CANCER CELL DETECTION AND DIAGNOSIS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418300016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since cancer becomes the most deadly disease to our health, research on early detection on cancer cells is necessary for clinical treatment. The combination of microfluidic device with cell biology has shown a unique method for cancer cell research. In the present review, recent development on microfluidic chip for cancer cell detection and diagnosis will be addressed. Some typical microfluidic chips focussed on cancer cells and their advantages for different kinds of cancer cell detection and diagnosis will be listed, and the cell capture methods within the microfluidics will be simultaneously mentioned. Then the potential direction of microfluidic chip on cancer cell detection and diagnosis in the future is also discussed.
Collapse
Affiliation(s)
- CHIYU LI
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - WANG LI
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - CHUNYANG GENG
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| | - HAIJUN REN
- Dalian Friendship Hospital, Dalian, Liaoning Province 116024, P. R. China
| | - XIAOHUI YU
- Dalian Institute of Maternal and Child Health Care, Dalian, Liaoning Province 116024, P. R. China
| | - BO LIU
- Department of Biomedical Engineering, Dalian University of Technology, Dalian Liaoning Province 116024, P. R. China
| |
Collapse
|
10
|
Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Biotechnol J 2017; 12. [PMID: 28166394 DOI: 10.1002/biot.201600699] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiangzhi Liao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. LAB ON A CHIP 2016; 16:2148-67. [PMID: 27191245 DOI: 10.1039/c6lc00355a] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dielectrophoresis is a powerful technique used to distinguish distinct cellular identities in heterogeneous cell populations and to monitor changes in the cell state without the need for biochemical tags, including live and dead cells. Recent studies in the past decade have indicated that dielectrophoresis can be used to discriminate the disease state of cells by exploring the differences in the dielectric polarizabilities of the cells. Factors controlling the dielectric polarizability are dependent on the conductivity and permittivity of the cell and the suspending medium, the cell morphology, the internal structure, and the electric double layer effects associated with the charges on the cell surface. Diseased cells, such as those associated with malaria, cancer, dengue, anthrax and human African trypanosomiasis, could be spatially trapped by positive dielectrophoresis or spatially separated from other healthy cells by negative dielectrophoretic forces. The aim of this review was to provide a better and deeper understanding on how dielectrophoresis can be utilized to manipulate diseased cells. This review compiles and compares the significant findings obtained by researchers in manipulating abnormal or unhealthy cells.
Collapse
Affiliation(s)
- Ezekiel O Adekanmbi
- Department of Chemical and Material Engineering, University of Idaho, Moscow, 83844-1021, Idaho, USA.
| | | |
Collapse
|
12
|
Dash S, Mohanty S. Dielectrophoretic separation of micron and submicron particles: a review. Electrophoresis 2014; 35:2656-72. [PMID: 24930837 DOI: 10.1002/elps.201400084] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022]
Abstract
This paper provides an overview on separation of micron and submicron sized biological (cells, yeast, virus, bacteria, etc.) and nonbiological particles (latex, polystyrene, CNTs, metals, etc.) by dielectrophoresis (DEP), which finds wide applications in the field of medical and environmental science. Mathematical models to predict the electric field, flow profile, and concentration profiles of the particles under the influence of DEP force have also been covered in this review. In addition, advancements made primarily in the last decade, in the area of electrode design (shape and arrangement), new materials for electrode (carbon, silicon, polymers), and geometry of the microdevice, for efficient DEP separation of particles have been highlighted.
Collapse
Affiliation(s)
- Swagatika Dash
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | | |
Collapse
|
13
|
Ouyang M, Ki Cheung W, Liang W, Mai JD, Keung Liu W, Jung Li W. Inducing self-rotation of cells with natural and artificial melanin in a linearly polarized alternating current electric field. BIOMICROFLUIDICS 2013; 7:54112. [PMID: 24404075 PMCID: PMC3799643 DOI: 10.1063/1.4821169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/30/2013] [Indexed: 05/15/2023]
Abstract
The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future.
Collapse
Affiliation(s)
- Mengxing Ouyang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wing Ki Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, N. T., Hong Kong
| | - Wenfeng Liang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - John D Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wing Keung Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, N. T., Hong Kong
| | - Wen Jung Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong ; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|