1
|
Casati M, Piffer S, Calusi S, Marrazzo L, Simontacchi G, Di Cataldo V, Greto D, Desideri I, Vernaleone M, Francolini G, Livi L, Pallotta S. Clinical validation of an automatic atlas‐based segmentation tool for male pelvis CT images. J Appl Clin Med Phys 2022; 23:e13507. [PMID: 35064746 PMCID: PMC8906199 DOI: 10.1002/acm2.13507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose This retrospective work aims to evaluate the possible impact on intra‐ and inter‐observer variability, contouring time, and contour accuracy of introducing a pelvis computed tomography (CT) auto‐segmentation tool in radiotherapy planning workflow. Methods Tests were carried out on five structures (bladder, rectum, pelvic lymph‐nodes, and femoral heads) of six previously treated subjects, enrolling five radiation oncologists (ROs) to manually re‐contour and edit auto‐contours generated with a male pelvis CT atlas created with the commercial software MIM MAESTRO. The ROs first delineated manual contours (M). Then they modified the auto‐contours, producing automatic‐modified (AM) contours. The procedure was repeated to evaluate intra‐observer variability, producing M1, M2, AM1, and AM2 contour sets (each comprising 5 structures × 6 test patients × 5 ROs = 150 contours), for a total of 600 contours. Potential time savings was evaluated by comparing contouring and editing times. Structure contours were compared to a reference standard by means of Dice similarity coefficient (DSC) and mean distance to agreement (MDA), to assess intra‐ and inter‐observer variability. To exclude any automation bias, ROs evaluated both M and AM sets as “clinically acceptable” or “to be corrected” in a blind test. Results Comparing AM to M sets, a significant reduction of both inter‐observer variability (p < 0.001) and contouring time (‐45% whole pelvis, p < 0.001) was obtained. Intra‐observer variability reduction was significant only for bladder and femoral heads (p < 0.001). The statistical test showed no significant bias. Conclusion Our atlas‐based workflow proved to be effective for clinical practice as it can improve contour reproducibility and generate time savings. Based on these findings, institutions are encouraged to implement their auto‐segmentation method.
Collapse
Affiliation(s)
- Marta Casati
- Medical Physics Unit Careggi University Hospital Florence Italy
| | - Stefano Piffer
- Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy
- National Institute of Nuclear Physics (INFN) Florence Italy
| | - Silvia Calusi
- Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy
- National Institute of Nuclear Physics (INFN) Florence Italy
| | - Livia Marrazzo
- Medical Physics Unit Careggi University Hospital Florence Italy
| | | | | | - Daniela Greto
- Radiation Oncology Unit Careggi University Hospital Florence Italy
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy
| | - Marco Vernaleone
- Radiation Oncology Unit Careggi University Hospital Florence Italy
| | | | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy
- Radiation Oncology Unit Careggi University Hospital Florence Italy
| | - Stefania Pallotta
- Medical Physics Unit Careggi University Hospital Florence Italy
- Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy
| |
Collapse
|
2
|
Li G, Li Y, Wang J, Gao X, Zhong Q, He L, Li C, Liu M, Liu Y, Ma M, Wang H, Wang X, Zhu H. Guidelines for radiotherapy of prostate cancer (2020 edition). PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gaofeng Li
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Yexiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC) Beijing P. R. China
| | - Junjie Wang
- Department of Radiation Oncology Peking University Third Hospital Beijing P. R. China
| | - Xianshu Gao
- Department of Radiation Oncology Peking University First Hospital Beijing P. R. China
| | - Qiuzi Zhong
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Liru He
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou 510060 P. R. China
| | - Chunmei Li
- Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Yueping Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC) Beijing P. R. China
| | - Mingwei Ma
- Department of Radiation Oncology Peking University First Hospital Beijing P. R. China
| | - Hao Wang
- Department of Radiation Oncology Peking University Third Hospital Beijing P. R. China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| | - Hui Zhu
- Department of Nuclear Medicine Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine Chinese Academy of Medical Sciences Beijing P. R. China
| |
Collapse
|
3
|
Casati M, Piffer S, Calusi S, Marrazzo L, Simontacchi G, Di Cataldo V, Greto D, Desideri I, Vernaleone M, Francolini G, Livi L, Pallotta S. Methodological approach to create an atlas using a commercial auto-contouring software. J Appl Clin Med Phys 2020; 21:219-230. [PMID: 33236827 PMCID: PMC7769405 DOI: 10.1002/acm2.13093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The aim of this work was to establish a methodological approach for creation and optimization of an atlas for auto-contouring, using the commercial software MIM MAESTRO (MIM Software Inc. Cleveland OH). METHODS A computed tomography (CT) male pelvis atlas was created and optimized to evaluate how different tools and options impact on the accuracy of automatic segmentation. Pelvic lymph nodes (PLN), rectum, bladder, and femurs of 55 subjects were reviewed for consistency by a senior consultant radiation oncologist with 15 yr of experience. Several atlas and workflow options were tuned to optimize the accuracy of auto-contours. The deformable image registration (DIR), the finalization method, the k number of atlas best matching subjects, and several post-processing options were studied. To test our atlas performances, automatic and reference manual contours of 20 test subjects were statistically compared based on dice similarity coefficient (DSC) and mean distance to agreement (MDA) indices. The effect of field of view (FOV) reduction on auto-contouring time was also investigated. RESULTS With the optimized atlas and workflow, DSC and MDA median values of bladder, rectum, PLN, and femurs were 0.91 and 1.6 mm, 0.85 and 1.6 mm, 0.85 and 1.8 mm, and 0.96 and 0.5 mm, respectively. Auto-contouring time was more than halved by strictly cropping the FOV of the subject to be contoured to the pelvic region. CONCLUSION A statistically significant improvement of auto-contours accuracy was obtained using our atlas and optimized workflow instead of the MIM Software pelvic atlas.
Collapse
Affiliation(s)
- Marta Casati
- Department of Medical Physics, Careggi University Hospital, Florence, Italy
| | - Stefano Piffer
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,National Institute of Nuclear Physics (INFN), Florence, Italy
| | - Silvia Calusi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Livia Marrazzo
- Department of Medical Physics, Careggi University Hospital, Florence, Italy
| | | | | | - Daniela Greto
- Department of Radiation Oncology, Careggi University Hospital, Florence, Italy
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Marco Vernaleone
- Department of Radiation Oncology, Careggi University Hospital, Florence, Italy
| | - Giulio Francolini
- Department of Radiation Oncology, Careggi University Hospital, Florence, Italy
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Wang Z, Chang Y, Peng Z, Lv Y, Shi W, Wang F, Pei X, Xu XG. Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients. J Appl Clin Med Phys 2020; 21:272-279. [PMID: 33238060 PMCID: PMC7769393 DOI: 10.1002/acm2.13097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/03/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the accuracy of a deep learning‐based auto‐segmentation mode to that of manual contouring by one medical resident, where both entities tried to mimic the delineation "habits" of the same clinical senior physician. Methods This study included 125 cervical cancer patients whose clinical target volumes (CTVs) and organs at risk (OARs) were delineated by the same senior physician. Of these 125 cases, 100 were used for model training and the remaining 25 for model testing. In addition, the medical resident instructed by the senior physician for approximately 8 months delineated the CTVs and OARs for the testing cases. The dice similarity coefficient (DSC) and the Hausdorff Distance (HD) were used to evaluate the delineation accuracy for CTV, bladder, rectum, small intestine, femoral‐head‐left, and femoral‐head‐right. Results The DSC values of the auto‐segmentation model and manual contouring by the resident were, respectively, 0.86 and 0.83 for the CTV (P < 0.05), 0.91 and 0.91 for the bladder (P > 0.05), 0.88 and 0.84 for the femoral‐head‐right (P < 0.05), 0.88 and 0.84 for the femoral‐head‐left (P < 0.05), 0.86 and 0.81 for the small intestine (P < 0.05), and 0.81 and 0.84 for the rectum (P > 0.05). The HD (mm) values were, respectively, 14.84 and 18.37 for the CTV (P < 0.05), 7.82 and 7.63 for the bladder (P > 0.05), 6.18 and 6.75 for the femoral‐head‐right (P > 0.05), 6.17 and 6.31 for the femoral‐head‐left (P > 0.05), 22.21 and 26.70 for the small intestine (P > 0.05), and 7.04 and 6.13 for the rectum (P > 0.05). The auto‐segmentation model took approximately 2 min to delineate the CTV and OARs while the resident took approximately 90 min to complete the same task. Conclusion The auto‐segmentation model was as accurate as the medical resident but with much better efficiency in this study. Furthermore, the auto‐segmentation approach offers additional perceivable advantages of being consistent and ever improving when compared with manual approaches.
Collapse
Affiliation(s)
- Zhi Wang
- Center of Radiological Medical Physics, University of Science and Technology of China, Hefei, China.,Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yankui Chang
- Center of Radiological Medical Physics, University of Science and Technology of China, Hefei, China
| | - Zhao Peng
- Center of Radiological Medical Physics, University of Science and Technology of China, Hefei, China
| | - Yin Lv
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weijiong Shi
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Pei
- Center of Radiological Medical Physics, University of Science and Technology of China, Hefei, China.,Anhui Wisdom Technology Co., Ltd., Hefei, Anhui, China
| | - X George Xu
- Center of Radiological Medical Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Kiljunen T, Akram S, Niemelä J, Löyttyniemi E, Seppälä J, Heikkilä J, Vuolukka K, Kääriäinen OS, Heikkilä VP, Lehtiö K, Nikkinen J, Gershkevitsh E, Borkvel A, Adamson M, Zolotuhhin D, Kolk K, Pang EPP, Tuan JKL, Master Z, Chua MLK, Joensuu T, Kononen J, Myllykangas M, Riener M, Mokka M, Keyriläinen J. A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study. Diagnostics (Basel) 2020; 10:E959. [PMID: 33212793 PMCID: PMC7697786 DOI: 10.3390/diagnostics10110959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
A commercial deep learning (DL)-based automated segmentation tool (AST) for computed tomography (CT) is evaluated for accuracy and efficiency gain within prostate cancer patients. Thirty patients from six clinics were reviewed with manual- (MC), automated- (AC) and automated and edited (AEC) contouring methods. In the AEC group, created contours (prostate, seminal vesicles, bladder, rectum, femoral heads and penile bulb) were edited, whereas the MC group included empty datasets for MC. In one clinic, lymph node CTV delineations were evaluated for interobserver variability. Compared to MC, the mean time saved using the AST was 12 min for the whole data set (46%) and 12 min for the lymph node CTV (60%), respectively. The delineation consistency between MC and AEC groups according to the Dice similarity coefficient (DSC) improved from 0.78 to 0.94 for the whole data set and from 0.76 to 0.91 for the lymph nodes. The mean DSCs between MC and AC for all six clinics were 0.82 for prostate, 0.72 for seminal vesicles, 0.93 for bladder, 0.84 for rectum, 0.69 for femoral heads and 0.51 for penile bulb. This study proves that using a general DL-based AST for CT images saves time and improves consistency.
Collapse
Affiliation(s)
- Timo Kiljunen
- Docrates Cancer Center, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; (T.J.); (J.K.); (M.M.); (M.R.)
| | - Saad Akram
- MVision Ai, c/o Terkko Health hub, Haartmaninkatu 4, FI-00290 Helsinki, Finland; (S.A.); (J.N.)
| | - Jarkko Niemelä
- MVision Ai, c/o Terkko Health hub, Haartmaninkatu 4, FI-00290 Helsinki, Finland; (S.A.); (J.N.)
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku, Kiinamyllynkatu 10, FI-20014 Turku, Finland;
| | - Jan Seppälä
- Kuopio University Hospital, Center of Oncology, Kelkkailijantie 7, FI-70210 Kuopio, Finland; (J.S.); (J.H.); (K.V.); (O.-S.K.)
| | - Janne Heikkilä
- Kuopio University Hospital, Center of Oncology, Kelkkailijantie 7, FI-70210 Kuopio, Finland; (J.S.); (J.H.); (K.V.); (O.-S.K.)
| | - Kristiina Vuolukka
- Kuopio University Hospital, Center of Oncology, Kelkkailijantie 7, FI-70210 Kuopio, Finland; (J.S.); (J.H.); (K.V.); (O.-S.K.)
| | - Okko-Sakari Kääriäinen
- Kuopio University Hospital, Center of Oncology, Kelkkailijantie 7, FI-70210 Kuopio, Finland; (J.S.); (J.H.); (K.V.); (O.-S.K.)
| | - Vesa-Pekka Heikkilä
- Oulu University Hospital, Department of Oncology and Radiotherapy, Kajaanintie 50, FI-90220 Oulu, Finland; (V.-P.H.); (K.L.); (J.N.)
- University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Aapistie 5 A, FI-90220 Oulu, Finland
| | - Kaisa Lehtiö
- Oulu University Hospital, Department of Oncology and Radiotherapy, Kajaanintie 50, FI-90220 Oulu, Finland; (V.-P.H.); (K.L.); (J.N.)
| | - Juha Nikkinen
- Oulu University Hospital, Department of Oncology and Radiotherapy, Kajaanintie 50, FI-90220 Oulu, Finland; (V.-P.H.); (K.L.); (J.N.)
- University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Aapistie 5 A, FI-90220 Oulu, Finland
| | - Eduard Gershkevitsh
- North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia; (E.G.); (A.B.); (M.A.); (D.Z.); (K.K.)
| | - Anni Borkvel
- North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia; (E.G.); (A.B.); (M.A.); (D.Z.); (K.K.)
| | - Merve Adamson
- North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia; (E.G.); (A.B.); (M.A.); (D.Z.); (K.K.)
| | - Daniil Zolotuhhin
- North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia; (E.G.); (A.B.); (M.A.); (D.Z.); (K.K.)
| | - Kati Kolk
- North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia; (E.G.); (A.B.); (M.A.); (D.Z.); (K.K.)
| | - Eric Pei Ping Pang
- National Cancer Centre Singapore, Division of Radiation Oncology, 11 Hospital Crescent, Singapore 169610, Singapore; (E.P.P.P); (J.K.L.T); (Z.M.); (M.L.K.C)
| | - Jeffrey Kit Loong Tuan
- National Cancer Centre Singapore, Division of Radiation Oncology, 11 Hospital Crescent, Singapore 169610, Singapore; (E.P.P.P); (J.K.L.T); (Z.M.); (M.L.K.C)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zubin Master
- National Cancer Centre Singapore, Division of Radiation Oncology, 11 Hospital Crescent, Singapore 169610, Singapore; (E.P.P.P); (J.K.L.T); (Z.M.); (M.L.K.C)
| | - Melvin Lee Kiang Chua
- National Cancer Centre Singapore, Division of Radiation Oncology, 11 Hospital Crescent, Singapore 169610, Singapore; (E.P.P.P); (J.K.L.T); (Z.M.); (M.L.K.C)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- National Cancer Centre Singapore, Division of Medical Sciences, Singapore 169610, Singapore
| | - Timo Joensuu
- Docrates Cancer Center, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; (T.J.); (J.K.); (M.M.); (M.R.)
| | - Juha Kononen
- Docrates Cancer Center, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; (T.J.); (J.K.); (M.M.); (M.R.)
| | - Mikko Myllykangas
- Docrates Cancer Center, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; (T.J.); (J.K.); (M.M.); (M.R.)
| | - Maigo Riener
- Docrates Cancer Center, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; (T.J.); (J.K.); (M.M.); (M.R.)
| | - Miia Mokka
- Turku University Hospital, Department of Oncology and Radiotherapy, Hämeentie 11, FI-20521 Turku, Finland; (M.M.); (J.K.)
| | - Jani Keyriläinen
- Turku University Hospital, Department of Oncology and Radiotherapy, Hämeentie 11, FI-20521 Turku, Finland; (M.M.); (J.K.)
- Turku University Hospital, Department of Medical Physics, Hämeentie 11, FI-20521 Turku, Finland
| |
Collapse
|
6
|
Unkelbach J, Bortfeld T, Cardenas CE, Gregoire V, Hager W, Heijmen B, Jeraj R, Korreman SS, Ludwig R, Pouymayou B, Shusharina N, Söderberg J, Toma-Dasu I, Troost EGC, Vasquez Osorio E. The role of computational methods for automating and improving clinical target volume definition. Radiother Oncol 2020; 153:15-25. [PMID: 33039428 DOI: 10.1016/j.radonc.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
Abstract
Treatment planning in radiotherapy distinguishes three target volume concepts: the gross tumor volume (GTV), the clinical target volume (CTV), and the planning target volume (PTV). Over time, GTV definition and PTV margins have improved through the development of novel imaging techniques and better image guidance, respectively. CTV definition is sometimes considered the weakest element in the planning process. CTV definition is particularly complex since the extension of microscopic disease cannot be seen using currently available in-vivo imaging techniques. Instead, CTV definition has to incorporate knowledge of the patterns of tumor progression. While CTV delineation has largely been considered the domain of radiation oncologists, this paper, arising from a 2019 ESTRO Physics research workshop, discusses the contributions that medical physics and computer science can make by developing computational methods to support CTV definition. First, we overview the role of image segmentation algorithms, which may in part automate CTV delineation through segmentation of lymph node stations or normal tissues representing anatomical boundaries of microscopic tumor progression. The recent success of deep convolutional neural networks has also enabled learning entire CTV delineations from examples. Second, we discuss the use of mathematical models of tumor progression for CTV definition, using as example the application of glioma growth models to facilitate GTV-to-CTV expansion for glioblastoma that is consistent with neuroanatomy. We further consider statistical machine learning models to quantify lymphatic metastatic progression of tumors, which may eventually improve elective CTV definition. Lastly, we discuss approaches to incorporate uncertainty in CTV definition into treatment plan optimization as well as general limitations of the CTV concept in the case of infiltrating tumors without natural boundaries.
Collapse
Affiliation(s)
- Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland.
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carlos E Cardenas
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Wille Hager
- Department of Physics, Medical Radiation Physics, Stockholm University and Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Ben Heijmen
- Department of Radiation Oncology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | - Stine S Korreman
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Roman Ludwig
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Bertrand Pouymayou
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Nadya Shusharina
- Division of Radiation Biophysics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | - Iuliana Toma-Dasu
- Department of Physics, Medical Radiation Physics, Stockholm University and Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Esther G C Troost
- Dept. of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
7
|
Kim N, Chang JS, Kim YB, Kim JS. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Radiat Oncol 2020; 15:106. [PMID: 32404123 PMCID: PMC7218589 DOI: 10.1186/s13014-020-01562-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Since intensity-modulated radiation therapy (IMRT) has become popular for the treatment of gynecologic cancers, the contouring process has become more critical. This study evaluated the feasibility of atlas-based auto-segmentation (ABAS) for contouring in patients with endometrial and cervical cancers. Methods A total of 75 sets of planning CT images from 75 patients were collected. Contours for the pelvic nodal clinical target volume (CTV), femur, and bladder were carefully generated by two skilled radiation oncologists. Of 75 patients, 60 were randomly registered in three different atlas libraries for ABAS in groups of 20, 40, or 60. ABAS was conducted in 15 patients, followed by manual correction (ABASc). The time required to generate all contours was recorded, and the accuracy of segmentation was assessed using Dice’s coefficient (DC) and the Hausdorff distance (HD) and compared to those of manually delineated contours. Results For ABAS-CTV, the best results were achieved with groups of 60 patients (DC, 0.79; HD, 19.7 mm) and the worst results with groups of 20 patients (DC, 0.75; p = 0.012; HD, 21.3 mm; p = 0.002). ABASc-CTV performed better than ABAS-CTV in terms of both HD and DC (ABASc [n = 60]; DC, 0.84; HD, 15.6 mm; all p < 0.017). ABAS required an average of 45.1 s, whereas ABASc required 191.1 s; both methods required less time than the manual methods (p < 0.001). Both ABAS-Femur and simultaneous ABAS-Bilateral-femurs showed satisfactory performance, regardless of the atlas library used (DC > 0.9 and HD ≤10.0 mm), with significant time reduction compared to that needed for manual delineation (p < 0.001). However, ABAS-Bladder did not prove to be feasible, with inferior results regardless of library size (DC < 0.6 and HD > 40 mm). Furthermore, ABASc-Bladder required a longer processing time than manual contouring to achieve the same accuracy. Conclusions ABAS could help physicians to delineate the CTV and organs-at-risk (e.g., femurs) in IMRT planning considering its consistency, efficacy, and accuracy.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
8
|
Wong WKH, Leung LHT, Kwong DLW. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. Br J Radiol 2015; 89:20140732. [PMID: 26539630 DOI: 10.1259/bjr.20140732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate and optimize the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. METHODS A retrospective study was conducted, and the accuracy of the multiple-atlas-based segmentation was tested on 30 patients. The effect of library size (LS), number of atlases used for contour averaging and the contour averaging strategy were also studied. The autogenerated contours were compared with the manually drawn contours. Dice similarity coefficient (DSC) and Hausdorff distance were used to evaluate the segmentation agreement. RESULTS Mixed results were found between simultaneous truth and performance level estimation (STAPLE) and majority vote (MV) strategies. Multiple-atlas approaches were relatively insensitive to LS. A LS of ten was adequate, and further increase in the LS only showed insignificant gain. Multiple atlas performed better than single atlas for most of the time. Using more atlases did not guarantee better performance, with five atlases performing better than ten atlases. With our recommended setting, the median DSC for the bladder, rectum, prostate, seminal vesicle and femurs was 0.90, 0.77, 0.84, 0.56 and 0.95, respectively. CONCLUSION Our study shows that multiple-atlas-based strategies have better accuracy than single-atlas approach. STAPLE is preferred, and a LS of ten is adequate for prostate cases. Using five atlases for contour averaging is recommended. The contouring accuracy of seminal vesicle still needs improvement, and manual editing is still required for the other structures. ADVANCES IN KNOWLEDGE This article provides a better understanding of the influence of the parameters used in multiple-atlas-based segmentation of prostate cancers.
Collapse
Affiliation(s)
- Wicger K H Wong
- 1 Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong
| | - Lucullus H T Leung
- 1 Department of Oncology, Princess Margaret Hospital, Kwai Chung, Hong Kong
| | - Dora L W Kwong
- 2 Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
9
|
Chen H, Zhen X, Gu X, Yan H, Cervino L, Xiao Y, Zhou L. SPARSE: Seed Point Auto-Generation for Random Walks Segmentation Enhancement in medical inhomogeneous targets delineation of morphological MR and CT images. J Appl Clin Med Phys 2015; 16:5324. [PMID: 26103201 PMCID: PMC5690082 DOI: 10.1120/jacmp.v16i2.5324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/30/2014] [Accepted: 11/26/2014] [Indexed: 12/04/2022] Open
Abstract
In medical image processing, robust segmentation of inhomogeneous targets is a challenging problem. Because of the complexity and diversity in medical images, the commonly used semiautomatic segmentation algorithms usually fail in the segmentation of inhomogeneous objects. In this study, we propose a novel algorithm imbedded with a seed point autogeneration for random walks segmentation enhancement, namely SPARSE, for better segmentation of inhomogeneous objects. With a few user-labeled points, SPARSE is able to generate extended seed points by estimating the probability of each voxel with respect to the labels. The random walks algorithm is then applied upon the extended seed points to achieve improved segmentation result. SPARSE is implemented under the compute unified device architecture (CUDA) programming environment on graphic processing unit (GPU) hardware platform. Quantitative evaluations are performed using clinical homogeneous and inhomogeneous cases. It is found that the SPARSE can greatly decrease the sensitiveness to initial seed points in terms of location and quantity, as well as the freedom of selecting parameters in edge weighting function. The evaluation results of SPARSE also demonstrate substantial improvements in accuracy and robustness to inhomogeneous target segmentation over the original random walks algorithm.
Collapse
Affiliation(s)
- Haibin Chen
- Department of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Xin Zhen
- Department of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Xuejun Gu
- Department of Radiation OncologyThe University of Texas, Southwestern Medical CenterDallasTXUSA
| | - Hao Yan
- Department of Radiation OncologyThe University of Texas, Southwestern Medical CenterDallasTXUSA
| | - Laura Cervino
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yang Xiao
- Department of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Linghong Zhou
- Department of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
10
|
Li W, Vassil A, Zhong Y, Xia P. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer. Med Phys 2013; 40:111720. [DOI: 10.1118/1.4824924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|