1
|
Pradhan K, Reuber EE, Sletten ET, Tomaso H, Seeberger PH. A Synthetic Oligosaccharide Resembling Francisella tularensis Strain 15 O-Antigen Capsular Polysaccharide as a Lead for Tularemia Diagnostics and Therapeutics. Angew Chem Int Ed Engl 2024:e202416432. [PMID: 39417793 DOI: 10.1002/anie.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Francisella tularensis, a category A bioterrorism agent, causes tularemia in many animal species. F. tularensis subspecies tularensis (type A) and holarctica (type B) are mainly responsible for human tularemia. The high mortality rate of 30-60 % caused by F. tularensis subspecies tularensis if left untreated and the aerosol dispersal renders this pathogen a dangerous bioagent. While a live attenuated vaccine strain (LVS) of F. tularensis type B does not provide sufficient protection against all forms of tularemia infections, a significant level of protection against F. tularensis has been observed for both passive and active immunization of mice with isolated O-antigen capsular polysaccharide. Well-defined, synthetic oligosaccharides offer an alternative approach towards the development of glycoconjugate vaccines. To identify diagnostics and therapeutics leads against tularemia, a collection of F. tularensis strain 15 O-antigen capsular polysaccharide epitopes were chemically synthesized. Glycan microarrays containing synthetic glycans were used to analyze the sera of tularemia-infected and non-infected animals and revealed the presence of IgG antibodies against the glycans. Two disaccharide (13 and 18), both bearing a unique formamido moiety, were identified as minimal glycan epitopes for antibody binding. These epitopes are the starting point for the development of diagnostics and therapeutics against tularemia.
Collapse
Affiliation(s)
- Kabita Pradhan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Emelie E Reuber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
2
|
Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem Sci 2022; 13:7755-7764. [PMID: 35865907 PMCID: PMC9258330 DOI: 10.1039/d2sc02176e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yanlei Hu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Shanshan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
3
|
Wan Y, Wu X, Xue Y, Lin XE, Wang L, Sun JS, Zhang Q. Stereoselective glycosylation with conformation-constrained 2-Nitroglycals as donors and bifunctional thiourea as catalyst. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2023560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xiaopei Wu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Yunxia Xue
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Xi-E Lin
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
- Key laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
4
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
5
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
6
|
Jeanneret RA, Johnson SE, Galan MC. Conformationally Constrained Glycosyl Donors as Tools to Control Glycosylation Outcomes. J Org Chem 2020; 85:15801-15826. [DOI: 10.1021/acs.joc.0c02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robin A. Jeanneret
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Simon E. Johnson
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Zhang Y, Gómez‐Redondo M, Jiménez‐Osés G, Arda A, Overkleeft HS, Marel GA, Jiménez‐Barbero J, Codée JDC. Synthesis and Structural Analysis of
Aspergillus fumigatus
Galactosaminogalactans Featuring α‐Galactose, α‐Galactosamine and α‐
N
‐Acetyl Galactosamine Linkages. Angew Chem Int Ed Engl 2020; 59:12746-12750. [DOI: 10.1002/anie.202003951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yongzhen Zhang
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcos Gómez‐Redondo
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Ana Arda
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
- Department Organic Chemistry II, Faculty Science & Technology EHU-UPV Leioa Spain
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
8
|
Zhang Y, Gómez‐Redondo M, Jiménez‐Osés G, Arda A, Overkleeft HS, Marel GA, Jiménez‐Barbero J, Codée JDC. Synthesis and Structural Analysis of
Aspergillus fumigatus
Galactosaminogalactans Featuring α‐Galactose, α‐Galactosamine and α‐
N
‐Acetyl Galactosamine Linkages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongzhen Zhang
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcos Gómez‐Redondo
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Ana Arda
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
- Department Organic Chemistry II, Faculty Science & Technology EHU-UPV Leioa Spain
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
9
|
Takato K, Kurita M, Yagami N, Tanaka HN, Ando H, Imamura A, Ishida H. Chemical synthesis of diglucosyl diacylglycerols utilizing glycosyl donors with stereodirecting cyclic silyl protective groups. Carbohydr Res 2019; 483:107748. [PMID: 31362138 DOI: 10.1016/j.carres.2019.107748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022]
Abstract
Chemical syntheses of the bacterial diglucosyl diacylglycerols 1-heptadecanoyl-2-pentadecanoyl-3-O-[6-O-(β-d-glucopyranosyl)-β-d-glucopyranosyl]-sn-glycerol and 1-(cis-13-octadecenoyl)-2-palmitoyl-3-O-[2-O-(α-d-glucopyranosyl)-α-d-glucopyranosyl]-sn-glycerol are described. The syntheses feature the stereoselective construction of glycosidic linkages in glycosylation reaction by utilizing glycosyl donors with stereodirecting cyclic silyl protective groups. The 1,1,3,3-tetraisopropyldisiloxane-1,3-diyl (TIPDS) group was used for formation of the β-glycosidic linkage, while the di-tert-butylsilylene (DTBS) group was used for α-linkage formation. The silyl protective groups were chemoselectively cleavable without affecting acyl functionalities on the glycerol moiety and proved effective for the synthesis of diacylglycoglycerolipids.
Collapse
Affiliation(s)
- Koichi Takato
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Motoki Kurita
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Nahoko Yagami
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|