1
|
Estevão XM, Dias APS, Flores-Colen I, Pereira MFC, Mendes MP. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2698-2712. [PMID: 39812912 DOI: 10.1007/s11356-025-35904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups. This degradation led to the breakdown of the polymer and the release of microplastics and nanoplastics. Controlled abrasion tests, conducted in a Denver ball with water, sand, and ceramic balls for 2 h, confirmed that water is a critical factor for fiber release from DFMs. These tests resulted in the release of 0.26 g of PP fibers from 20 DFMs (weighing 62 g in total) with a diameter of 20 µm. Weathering and abrasion tests indicated rapid release and degradation of microplastics and nanoplastics, underscoring the importance of pursuing actions like reuse. Ecotoxicological tests revealed that leachates from the DFM-incorporated mortars showed no adverse effects on Daphnia magna or Selenastrum capricornutum, unlike the reference mortar, which caused substantial toxicity to Daphnia magna. Incorporating PP fibers from DFMs into cement-based mortars showed promising potential, as indicated by favorable ecotoxicity and chemical leaching test results.
Collapse
Affiliation(s)
- Xiluva Maciel Estevão
- Departaments of Chemical Engineering and Mechanical Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ana Paula Soares Dias
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- VALORIZA - Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555, Portalegre, Portugal
| | - Inês Flores-Colen
- CERIS - Civil Engineering Research and Innovation for Sustainability, IST, University of Lisbon, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal
| | - Manuel Francisco Costa Pereira
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Maria Paula Mendes
- CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.
| |
Collapse
|
2
|
Ummik ML, Järvik O, Reinik J, Konist A. Ecotoxicity assessment of ashes from calcium-rich fuel combustion: contrasting results and regulatory implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48523-48533. [PMID: 39031317 DOI: 10.1007/s11356-024-34387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
The European Union's (EU) regulation for the waste classification based on their ecotoxicological hazard (hazardous property HP14) came into force on 5 July 2018. The regulation advocates the utilisation of computational formulae for the hazard classification of waste associated with hazardous property HP14. Concurrently, ecotoxicological testing remains an alternative. To date, the absence of a consensus regarding test organisms and methodologies has vested EU member states with autonomy in determining the approach for conducting ecotoxicity assessments. The discussions on waste classification are also ongoing globally, namely the discussions under the Basel Convention. This paper endeavours to elucidate whether the widely employed test organisms, Daphnia magna and Aliivibrio fischeri, may serve as suitable indicators for the evaluation of the ecotoxicity of waste. The research is grounded in the examination of ashes derived from a combustion process of calcium-rich fuel. Ecotoxicity testing was conducted on 14 ash samples with a liquid-to-solid ratio of 10:1. The results of the Aliivibrio fischeri testing indicated that all 14 ash samples were non-hazardous in terms of their ecotoxicity. However, the results of the Daphnia magna testing showed the opposite, suggesting that the ash samples may have the potential to be ecotoxic. This study offers valuable insights into ecotoxicity assessment and waste classification, emphasising the need for scientific rigour and comprehensive understanding before making regulatory decisions. It also situates its findings within the broader global context of waste management discussions, particularly those related to international agreements like the Basel Convention.
Collapse
Affiliation(s)
- Mari-Liis Ummik
- Department of Energy Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Oliver Järvik
- Department of Energy Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Janek Reinik
- Department of Energy Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Alar Konist
- Department of Energy Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia.
| |
Collapse
|
3
|
Maia MB, de Brito J, Martins IM, Silvestre JD. Ecotoxicity of Recycled Aggregates: Application of a Prediction Methodology. MATERIALS 2022; 15:ma15103510. [PMID: 35629536 PMCID: PMC9145564 DOI: 10.3390/ma15103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
Due to environmental concerns, the search for sustainable construction solutions has been increasing over the years. This global concern is creating a trend in the use of recycled aggregates resulting from construction and demolition wastes from different sources. In addition to their physical and mechanical properties, it is important to analyse their ecotoxicological risk to determine whether their leachates might be an issue. To assess ecotoxicity, biological tests should be performed for different trophic levels. This type of test is expensive and needs a high level of expertise, which leads to a lack of studies on recycled aggregates including ecotoxicity analysis. This paper presents a set of predictive ecotoxicity results based on the published studies on recycled aggregates. These results are the outcome of applying an innovative methodology previously developed and validated by the authors aiming to foresee the ecotoxicological fate of building materials’ constituents and products. The application of this methodology enables the classification of a recycled aggregate product as safe or unsafe in terms of ecotoxicity risk, while keeping biological testing to a minimum.
Collapse
Affiliation(s)
- Margarida B. Maia
- Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Georresources, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.B.M.); (J.D.S.)
| | - Jorge de Brito
- Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Georresources, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.B.M.); (J.D.S.)
- Correspondence:
| | - Isabel M. Martins
- Department of Materials, Laboratório Nacional de Engenharia Civil (LNEC), Av. do Brasil 101, 1700-066 Lisbon, Portugal;
| | - José D. Silvestre
- Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Georresources, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.B.M.); (J.D.S.)
| |
Collapse
|
4
|
Ecotoxicity of Concrete Containing Fine-Recycled Aggregate: Effect on Photosynthetic Pigments, Soil Enzymatic Activity and Carbonation Process. SUSTAINABILITY 2022. [DOI: 10.3390/su14031732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recycling of materials such as masonry or concrete is one of the suitable ways to reduce amount of disposed construction and demolition waste (CDW). However, the environmental safety of products containing recycled materials must be guaranteed. To verify overall environmental benefits of recycled concrete, this work considers ecotoxicity of recycled concrete, as well as potential environmental impacts of their life cycle. Moreover, impacts related with carbonation of concrete is considered in terms of durability and influence of potential CO2 uptake. Concrete containing fine recycled aggregate from two different sources (masonry and concrete) were examined experimentally at the biochemical level and compared with reference samples. Leaching experiments are performed in order to assess physicochemical properties and aquatic ecotoxicity using water flea, freshwater algae and duckweed. The consequences, such as effects of material on soil enzymatic activity (dehydrogenase activity), photosynthetic pigments (chlorophylls and carotenoids), and the carbonation process, are verified in the laboratory and included in the comparison with the theoretical life cycle assessment. As a conclusion, environmental safety of recycled concrete was verified, and its overall potential environmental impact was lower in comparison with reference concrete.
Collapse
|
5
|
Ecotoxicity and Essential Properties of Fine-Recycled Aggregate. MATERIALS 2021; 14:ma14020463. [PMID: 33477911 PMCID: PMC7833381 DOI: 10.3390/ma14020463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022]
Abstract
This article deals with the possibility of utilization of secondary-raw materials as a natural sand replacement in concrete. Four types of waste construction materials were examined—recycled aggregate from four different sources. The natural aggregate was examined as well as used as the reference sample. All the samples were tested to evaluate the water absorption, particle size distribution, and particle density. The basic chemical reactions in the view of ecotoxicology are investigated and measured based on Czech standards. Chemical analysis, Lemna growth inhibition test, freshwater algae, daphnia acute, and mustard germination toxicity test were made and discussed in this paper. Based on the physical and geometrical properties and ecotoxicology of examined waste materials, this work evaluated them as suitable for utilization in concrete as a sand replacement.
Collapse
|
6
|
Evaluation of the Ecotoxicological Potential of Fly Ash and Recycled Concrete Aggregates Use in Concrete. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010351] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study applies a methodology to evaluate the ecotoxicological potential of raw materials and cement-based construction materials. In this study, natural aggregates and Portland cement were replaced with non-conventional recycled concrete aggregates (RA) and fly ash (FA), respectively, in the production of two concrete products alternative to conventional concrete (used as reference). The experimental program involved assessing both the chemical properties (non-metallic and metallic parameters) and ecotoxicity data (battery of tests with the luminescent bacterium Vibrio fischeri, the freshwater crustacean Daphnia magna, and the yeast Saccharomyces cerevisiae) of eluates obtained from leaching tests of RA, FA, and the three concrete mixes. Even though the results indicated that RA and FA have the ability to release some chemicals into the water and induce its alkalinisation, the respective eluate samples presented no or low levels of potential ecotoxicity. However, eluates from concrete mixes produced with a replacement ratio of Portland cement with 60% of FA and 100% of natural aggregates and produced with 60% of FA and 100% of RA were classified as clearly ecotoxic mainly towards Daphnia magna mobility. Therefore, raw materials with weak evidences of ecotoxicity could lead to the production of concrete products with high ecotoxicological potential. Overall, the results obtained highlight the importance of integrating data from the chemical and ecotoxicological characterization of materials’ eluate samples aiming to assess the possible environmental risk of the construction materials, namely of incorporating non-conventional raw materials in concrete, and contributing to achieve construction sustainability.
Collapse
|