1
|
Xu Y, Hao Y, Arif M, Xing X, Deng X, Wang D, Meng Y, Wang S, Hasanin MS, Wang W, Zhou Q. Poly(Lysine)-Derived Carbon Quantum Dots Conquer Enterococcus faecalis Biofilm-Induced Persistent Endodontic Infections. Int J Nanomedicine 2024; 19:5879-5893. [PMID: 38895145 PMCID: PMC11184170 DOI: 10.2147/ijn.s453385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Persistent endodontic infections (PEIs) mediated by bacterial biofilm mainly cause persistent periapical inflammation, resulting in recurrent periapical abscesses and progressive bone destruction. However, conventional root canal disinfectants are highly damaging to the tooth and periodontal tissue and ineffective in treating persistent root canal infections. Antimicrobial materials that are biocompatible with apical tissues and can eliminate PEIs-associated bacteria are urgently needed. Methods Here, ε-poly (L-lysine) derived carbon quantum dots (PL-CQDs) are fabricated using pyrolysis to remove PEIs-associated bacterial biofilms. Results Due to their ultra-small size, high positive charge, and active reactive oxygen species (ROS) generation capacity, PL-CQDs exhibit highly effective antibacterial activity against Enterococcus faecalis (E. faecalis), which is greatly dependent on PL-CQDs concentrations. 100 µg/mL PL-CQDs could kill E. faecalis in 5 min. Importantly, PL-CQDs effectively achieved a reduction of biofilms in the isolated teeth model, disrupting the dense structure of biofilms. PL-CQDs have acceptable cytocompatibility and hemocompatibility in vitro and good biosafety in vivo. Discussion Thus, PL-CQDs provide a new strategy for treating E. faecalis-associated PEIs.
Collapse
Affiliation(s)
- Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Yuanping Hao
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Muhammad Arif
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Xiaodong Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
| | - Xuyang Deng
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Danyang Wang
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Meng
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Shuai Wang
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | | | - Wanchun Wang
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People’s Republic of China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
Susila AV, Sai S, Sharma N, Balasubramaniam A, Veronica AK, Nivedhitha S. Can natural irrigants replace sodium hypochlorite? A systematic review. Clin Oral Investig 2023; 27:1831-1849. [PMID: 36808559 DOI: 10.1007/s00784-023-04913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
CONTEXT Sodium hypochlorite, a gold standard for irrigation in endodontics, has disadvantages like toxicity and root dentin weakening. Alternatives derived from natural products are being explored. AIMS This systematic review was done to understand the clinical benefits of natural irrigants when compared with a standard irrigant, sodium hypochlorite. SETTINGS AND DESIGN REGISTRATION This systematic review was registered with PROSPERO (2018 CRD42018112837) METHODS AND MATERIAL: This review was done in conformation to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA 2020) statement. In vivo studies using at least one natural irrigant and sodium hypochlorite (NaOCl) were included. Studies using them as medicaments were excluded. PubMed, Cochrane and SCOPUS were searched. RevMan tool for Risk of Bias 2 (RoB 2) and risk-of-bias tool to assess non-randomized studies of interventions (ROBINS-I) were used. GRADEpro was used to assess certainty of evidence. RESULTS Ten articles (6 RCTs and 4 clinical studies) on approximately 442 patients were included. Seven natural irrigants were evaluated clinically. Due to the heterogeneity, meta-analysis could not be conducted. Antimicrobial efficacy was found to be similar for castor oil, neem, garlic-lemon, noni, papaine and NaOCl. Neem, papaine-chloramine, neem-NaOCl and neem-CHX were superior, while propolis, miswak and garlic were inferior to NaOCl. Post-operative pain was less for neem. There was no significant difference between papaine-chloramine, garlic extract and sodium hypochlorite in clinical/radiographic success. CONCLUSIONS The studied natural irrigants are not more efficacious than NaOCl. At the moment, they cannot replace NaOCl routinely and may only substitute in select cases.
Collapse
Affiliation(s)
- Anand Venkatraman Susila
- Department of Conservative Dentistry & Endodontics, Madha Dental College & Hospital, Somangalam, Kavanoor Road, Kundrathur, Chennai, Tamil Nadu, 600069, India.
| | - Shamini Sai
- Department of Conservative Dentistry & Endodontics, Madha Dental College & Hospital, Somangalam, Kavanoor Road, Kundrathur, Chennai, Tamil Nadu, 600069, India
| | - Nikita Sharma
- Department of Conservative Dentistry & Endodontics, Shree Bankey Bihari Dental College and Research Centre, Masuri, NH 24, Ghaziabad, Uttar Pradesh, India
| | - Arthi Balasubramaniam
- Department of Public Health Dentistry, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Aruna Kumari Veronica
- Department of Conservative Dentistry & Endodontics, Madha Dental College & Hospital, Somangalam, Kavanoor Road, Kundrathur, Chennai, Tamil Nadu, 600069, India
| | - Sureshbabu Nivedhitha
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Charavet C, Graveline L, Gourdain Z, Lupi L. What Are the Cleaning and Disinfection Methods for Acrylic Orthodontic Removable Appliance? A Systematic Review. CHILDREN 2021; 8:children8110967. [PMID: 34828679 PMCID: PMC8623359 DOI: 10.3390/children8110967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: The use of removable orthodontic appliances, which is common in early ages, requires careful hygiene, as several different microorganisms are found on their surface during the orthodontic treatment. (2) Methods: Comprehensive electronic searches were conducted up to May 2021. Randomized controlled trials (RCTs) or controlled clinical trials (CCTs), prospective or retrospective, evaluating the efficacy of cleaning and disinfection methods for acrylic removable orthodontic appliances, redacted in the English language, were included. Three independent blinding review authors were involved in study selection, data extraction, and bias assessment. (3) Results: A total of 2491 records were screened and eight studies (six RCTs and two CCTs) fulfilled the inclusion criteria. Among the overall cleaning and disinfection methods described in the included studies, four categories could be defined: liquid antimicrobial agents, commercial tablet cleansers, natural plant extracts and incorporation of quaternary ammonium methacryloxy silicate, all of which demonstrated superior efficacy compared to the placebo/negative control. However, the different methods were not compared with each other. (4) Conclusions: Biofilm control on acrylic orthodontic removable appliances can be performed using the different cleaning and disinfection methods considered in the included studies. Further studies are needed to define the most effective technique. Registration: PROSPERO CRD 42021269297.
Collapse
Affiliation(s)
- Carole Charavet
- Université Côte d'Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France
- Laboratoire MICORALIS UPR 7354, Université Côte d'Azur, 06800 Nice, France
| | - Léa Graveline
- Université Côte d'Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France
| | - Zoé Gourdain
- Université Côte d'Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France
| | - Laurence Lupi
- Université Côte d'Azur, Faculté de Chirurgie Dentaire, 06800 Nice, France
- Centre Hospitalier Universitaire de Nice, Pôle Odontologie, 06000 Nice, France
- Laboratoire MICORALIS UPR 7354, Université Côte d'Azur, 06800 Nice, France
| |
Collapse
|
5
|
Ji Y, Han Z, Ding H, Xu X, Wang D, Zhu Y, An F, Tang S, Zhang H, Deng J, Zhou Q. Enhanced Eradication of Bacterial/Fungi Biofilms by Glucose Oxidase-Modified Magnetic Nanoparticles as a Potential Treatment for Persistent Endodontic Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17289-17299. [PMID: 33827209 DOI: 10.1021/acsami.1c01748] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial/fungal biofilm-mediated persistent endodontic infections (PEIs) are one of the most frequent clinical lesions in the oral cavity, resulting in apical periodontitis and tooth damage caused by loss of minerals. The conventional root canal disinfectants are poorly bio-safe and harmful to teeth and tissues, making them ineffective in treating PEIs. The development of nanomaterials is emerging as a promising strategy to eradicate disease-related bacteria/fungi. Herein, glucose oxidase (GOx)-modified magnetic nanoparticles (MNPs) were synthesized via a facile and versatile route for investigating their effects on removing PEI-related bacterial/fungal biofilms. It is found that GOx was successfully immobilized on the MNPs by detecting the changes in the diameter, chemical functional group, charge, and magnetic response. Further, we demonstrate that GOx-modified MNPs (GMNPs) exhibit highly effective antibacterial activity against Enterococcus faecalis and Candida albicans. Moreover, the antibacterial/fungal activity of GMNPs is greatly dependent on their concentrations. Importantly, when placed in contact with bacterial/fungal biofilms, the dense biofilm matrix is destructed due to the movement of GMNPs induced by the magnetic field, the formation of reactive oxygen species, and nutrient starvation induced by GOx. Also, the in vitro experiment shows that the as-prepared GMNPs have excellent cytocompatibility and blood compatibility. Thus, GMNPs offer a novel strategy to treat bacteria/fungi-associated PEIs for potential clinical applications.
Collapse
Affiliation(s)
- Yanjing Ji
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zeyu Han
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yanli Zhu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fei An
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| |
Collapse
|
6
|
Perspective: Stabilizing the Microbiome Skin-Gut-Brain Axis with Natural Plant Botanical Ingredients in Cosmetics. COSMETICS 2018. [DOI: 10.3390/cosmetics5020037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|