1
|
Gardner J, Abrams ST, Toh CH, Parker AL, Lovatt C, Nicolson PLR, Watson SP, Grice S, Hering L, Pirmohamed M, Naisbitt DJ. Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines. NPJ Vaccines 2024; 9:99. [PMID: 38839821 PMCID: PMC11153626 DOI: 10.1038/s41541-024-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved.
Collapse
Affiliation(s)
- Joshua Gardner
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom.
| | - Simon Timothy Abrams
- Institute of Infection, Veterinary Sciences and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Institute of Infection, Veterinary Sciences and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Charlotte Lovatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Grice
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Luisa Hering
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Dean J Naisbitt
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Abrams ST, Du M, Shaw RJ, Johnson C, McGuinness D, Schofield J, Yong J, Turtle L, Nicolson PLR, Moxon C, Wang G, Toh CH. Damage-associated cellular markers in the clinical and pathogenic profile of vaccine-induced immune thrombotic thrombocytopenia. J Thromb Haemost 2024; 22:1145-1153. [PMID: 38103733 DOI: 10.1016/j.jtha.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Adenoviral vector-based COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) is rare but carries significant risks of mortality and long-term morbidity. The underlying pathophysiology of severe disease is still not fully understood. The objectives were to explore the pathophysiological profile and examine for clinically informative biomarkers in patients with severe VITT. METHODS Twenty-two hospitalized patients with VITT, 9 pre- and 21 post-ChAdOx1 vaccine controls, were recruited across England, United Kingdom. Admission blood samples were analyzed for cytokine profiles, cell death markers (lactate dehydrogenase and circulating histones), neutrophil extracellular traps, and coagulation parameters. Tissue specimens from deceased patients were analyzed. RESULTS There were strong immune responses characterized by significant elevations in proinflammatory cytokines and T helper 1 and 2 cell activation in patients with VITT. Markers of systemic endothelial activation and coagulation activation in both circulation and organ sections were also significantly elevated. About 70% (n = 15/22) of patients met the International Society for Thrombosis and Haemostasis criteria for disseminated intravascular coagulation despite negligible changes in the prothrombin time. The increased neutrophil extracellular trap formation, in conjunction with marked lymphopenia, elevated lactate dehydrogenase, and circulating histone levels, indicates systemic immune cell injury or death. Both lymphopenia and circulating histone levels independently predicted 28-day mortality in patients with VITT. CONCLUSION The coupling of systemic cell damage and death with strong immune-inflammatory and coagulant responses are pathophysiologically dominant and clinically relevant in severe VITT.
Collapse
Affiliation(s)
- Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca J Shaw
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Johnson
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Dagmara McGuinness
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Jeremy Schofield
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Lance Turtle
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Haemophilia Comprehensive Care Centre, Queen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Christopher Moxon
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Haematology Department, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom; Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| |
Collapse
|
3
|
Simpson M, Narwal A, West E, Martin J, Bagot CN, Page AR, Watson HG, Whyte CS, Mutch NJ. Fibrinogenolysis and fibrinolysis in vaccine-induced immune thrombocytopenia and thrombosis. J Thromb Haemost 2023; 21:3589-3596. [PMID: 37734715 DOI: 10.1016/j.jtha.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome associated with adenoviral vector vaccines for COVID-19. The syndrome is characterized by thrombosis, anti-platelet factor 4 (PF4) antibodies, thrombocytopenia, high D-dimer, and hypofibrinogenemia. OBJECTIVES To investigate abnormalities in fibrinolysis that contribute to the clinical features of VITT. METHODS Plasma samples from 18 suspected VITT cases were tested for anti-PF4 by ELISA and characterized as meeting criteria for VITT (11/18) or deemed unlikely (7/18; non-VITT). Antigen levels of PAI-1, factor XIII (FXIII), plasmin-α2antiplasmin (PAP), and inflammatory markers were quantified. Plasmin generation was quantified by chromogenic substrate. Western blotting was performed with antibodies to fibrinogen, FXIII-A, and plasminogen. RESULTS VITT patients 10/11 had scores indicative of overt disseminated intravascular coagulation, while 0/7 non-VITT patients met the criteria. VITT patients had significantly higher levels of inflammatory markers, IL-1β, IL-6, IL-8, TNFα, and C-reactive protein. In VITT patients, both fibrinogen and FXIII levels were significantly lower, while PAP and tPA-mediated plasmin generation were higher compared to non-VITT patients. Evidence of fibrinogenolysis was observed in 9/11 VITT patients but not in non-VITT patients or healthy controls. Fibrinogen degradation products were apparent, with obvious cleavage of the fibrinogen α-chain. PAP complex was evident in those VITT patients with fibrinogenolysis, but not in non-VITT patients or healthy donors. CONCLUSION VITT patients show evidence of overt disseminated intravascular coagulation and fibrinogenolysis, mediated by dysregulated plasmin generation, as evidenced by increased PAP and plasmin generation. These observations are consistent with the clinical presentation of both thrombosis and bleeding in VITT.
Collapse
Affiliation(s)
- Megan Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/SimpsonMegan8
| | - Anuj Narwal
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Eric West
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jill Martin
- Department of Haematology Laboratory, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Andrew R Page
- Department of Haematology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Henry G Watson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. https://twitter.com/ClaireW63108369
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)-Insights from Clinical Cases, In Vitro Studies and Murine Models. J Clin Med 2023; 12:6126. [PMID: 37834770 PMCID: PMC10573542 DOI: 10.3390/jcm12196126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.
Collapse
Affiliation(s)
| | | | | | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; (V.A.S.D.); (L.M.); (L.S.)
| |
Collapse
|
5
|
Abstract
Acute thrombosis and thrombocytopenia pose challenges to the clinician. Thrombocytopenia is naturally viewed as a risk factor for bleeding, and an association with acute thrombosis appears paradoxical. It presents typically as a medical emergency and requires treatment to be started before having confirmatory results. This review supports the attending clinician to recognise and manage conditions that are part of the thrombotic thrombocytopenic syndrome through four illustrative clinical cases. Common themes linking the underlying pathology and treatment are explored to highlight the continued relevance of this rare, but often devastating, presentation.
Collapse
Affiliation(s)
| | - Cheng-Hock Toh
- University of Liverpool, Liverpool, UK, and consultant in haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
6
|
Marietta M, Coluccio V, Luppi M. Potential mechanisms of vaccine-induced thrombosis. Eur J Intern Med 2022; 105:1-7. [PMID: 35953336 PMCID: PMC9359676 DOI: 10.1016/j.ejim.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is a rare syndrome characterized by high-titer anti-platelet factor 4 (PF4) antibodies, thrombocytopenia and arterial and venous thrombosis in unusual sites, as cerebral venous sinuses and splanchnic veins. VITT has been described to occur almost exclusively after administration of ChAdOx1 nCoV-19 and Ad26.COV2.S adenovirus vector- based COVID-19 vaccines. Clinical and laboratory features of VITT resemble those of heparin-induced thrombocytopenia (HIT). It has been hypothesized that negatively charged polyadenylated hexone proteins of the AdV vectors could act as heparin to induce the conformational changes of PF4 molecule that lead to the formation of anti-PF4/polyanion antibodies. The anti-PF4 immune response in VITT is fostered by the presence of a proinflammatory milieu, elicited by some impurities found in ChAdOx1 nCoV-19 vaccine, as well as by soluble spike protein resulting from alternative splice events. Anti-PF4 antibodies bind PF4, forming immune complexes which activate platelets, monocytes and granulocytes, resulting in the VITT's immunothrombosis. The reason why only a tiny minority of patents receiving AdV-based COVID-19 vaccines develop VITT is still unknown. It has been hypothesized that individual intrinsic factors, either acquired (i.e., pre-priming of B cells to produce anti-PF4 antibodies by previous contacts with bacteria or viruses) or inherited (i.e., differences in platelet T-cell ubiquitin ligand-2 [TULA-2] expression) can predispose a few subjects to develop VITT. A better knowledge of the mechanistic basis of VITT is essential to improve the safety and the effectiveness of future vaccines and gene therapies using adenovirus vectors.
Collapse
Affiliation(s)
- Marco Marietta
- Hematology Unit, Azienda Ospedaliero- Universitaria, Modena, Italy.
| | - Valeria Coluccio
- Hematology Unit, Azienda Ospedaliero- Universitaria, Modena, Italy
| | - Mario Luppi
- Hematology Unit, Azienda Ospedaliero- Universitaria, Modena, Italy; Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Emmanuel A. Health means more than just healthcare. Clin Med (Lond) 2022; 22:94. [PMID: 38589194 DOI: 10.7861/clinmed.ed.22.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|