1
|
Long-Term Protective Effect of Human Dystrophin Expressing Chimeric (DEC) Cell Therapy on Amelioration of Function of Cardiac, Respiratory and Skeletal Muscles in Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2022; 18:2872-2892. [PMID: 35590083 PMCID: PMC9622520 DOI: 10.1007/s12015-022-10384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in dystrophin encoding gene, causing progressive degeneration of cardiac, respiratory, and skeletal muscles leading to premature death due to cardiac and respiratory failure. Currently, there is no cure for DMD. Therefore, novel therapeutic approaches are needed for DMD patients. We have previously reported functional improvements which correlated with increased dystrophin expression following administration of dystrophin expressing chimeric (DEC) cells of myoblast origin to the mdx mouse models of DMD. In the current study, we confirmed dose-dependent protective effect of human DEC therapy created from myoblasts of normal and DMD-affected donors, on restoration of dystrophin expression and amelioration of cardiac, respiratory, and skeletal muscle function at 180 days after systemic-intraosseous DEC administration to mdx/scid mouse model of DMD. Functional improvements included maintenance of ejection fraction and fractional shortening levels on echocardiography, reduced enhanced pause and expiration time on plethysmography and improved grip strength and maximum stretch induced contraction of skeletal muscles. Improved function was associated with amelioration of mdx muscle pathology revealed by reduced muscle fibrosis, reduced inflammation and improved muscle morphology confirmed by reduced number of centrally nucleated fibers and normalization of muscle fiber diameters. Our findings confirm the long-term systemic effect of DEC therapy in the most severely affected by DMD organs including heart, diaphragm, and long skeletal muscles. These encouraging preclinical data introduces human DEC as a novel therapeutic modality of Advanced Therapy Medicinal Product (ATMP) with the potential to improve or halt the progression of DMD and enhance quality of life of DMD patients.
Collapse
|
2
|
Foltz S, Wu F, Ghazal N, Kwong JQ, Hartzell HC, Choo HJ. Sex differences in the involvement of skeletal and cardiac muscles in myopathic Ano5-/- mice. Am J Physiol Cell Physiol 2022; 322:C283-C295. [PMID: 35020501 PMCID: PMC8836717 DOI: 10.1152/ajpcell.00350.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.
Collapse
Affiliation(s)
- Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Nasab Ghazal
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer Q Kwong
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Hyojung J Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
4
|
Mele A, Mantuano P, Fonzino A, Rana F, Capogrosso RF, Sanarica F, Rolland JF, Cappellari O, De Luca A. Ultrasonography validation for early alteration of diaphragm echodensity and function in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2021; 16:e0245397. [PMID: 33434240 PMCID: PMC7802948 DOI: 10.1371/journal.pone.0245397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-β1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Cardiac Protection after Systemic Transplant of Dystrophin Expressing Chimeric (DEC) Cells to the mdx Mouse Model of Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2020; 15:827-841. [PMID: 31612351 PMCID: PMC6925071 DOI: 10.1007/s12015-019-09916-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive lethal disease caused by X-linked mutations of the dystrophin gene. Dystrophin deficiency clinically manifests as skeletal and cardiac muscle weakness, leading to muscle wasting and premature death due to cardiac and respiratory failure. Currently, no cure exists. Since heart disease is becoming a leading cause of death in DMD patients, there is an urgent need to develop new more effective therapeutic strategies for protection and improvement of cardiac function. We previously reported functional improvements correlating with dystrophin restoration following transplantation of Dystrophin Expressing Chimeric Cells (DEC) of myoblast origin in the mdx and mdx/scid mouse models. Here, we confirm positive effect of DEC of myoblast (MBwt/MBmdx) and mesenchymal stem cells (MBwt/MSCmdx) origin on protection of cardiac function after systemic DEC transplant. Therapeutic effect of DEC transplant (0.5 × 106) was assessed by echocardiography at 30 and 90 days after systemic-intraosseous injection to the mdx mice. At 90 days post-transplant, dystrophin expression in cardiac muscles of DEC injected mice significantly increased (15.73% ± 5.70 –MBwt/MBmdx and 5.22% ± 1.10 – MBwt/MSCmdx DEC) when compared to vehicle injected controls (2.01% ± 1.36) and, correlated with improved ejection fraction and fractional shortening on echocardiography. DEC lines of MB and MSC origin introduce a new promising approach based on the combined effects of normal myoblasts with dystrophin delivery capacities and MSC with immunomodulatory properties. Our study confirms feasibility and efficacy of DEC therapy on cardiac function and represents a novel therapeutic strategy for cardiac protection and muscle regeneration in DMD.
Collapse
|
6
|
Zschüntzsch J, Jouvenal PV, Zhang Y, Klinker F, Tiburcy M, Liebetanz D, Malzahn D, Brinkmeier H, Schmidt J. Long-term human IgG treatment improves heart and muscle function in a mouse model of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2020; 11:1018-1031. [PMID: 32436338 PMCID: PMC7432639 DOI: 10.1002/jcsm.12569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the dystrophin gene, which leads to structural instability of the dystrophin-glycoprotein-complex with subsequent muscle degeneration. In addition, muscle inflammation has been implicated in disease progression and therapeutically addressed with glucocorticosteroids. These have numerous adverse effects. Treatment with human immunoglobulin G (IgG) improved clinical and para-clinical parameters in the early disease phase in the well-established mdx mouse model. The aim of the present study was to confirm the efficacy of IgG in a long-term pre-clinical study in mdx mice. METHODS IgG (2 g/kg body weight) or NaCl solution as control was administered monthly over 18 months by intraperitoneal injection in mdx mice beginning at 3 weeks of age. Several clinical outcome measures including endurance, muscle strength, and echocardiography were assessed. After 18 months, the animals were sacrificed, blood was collected for analysis, and muscle samples were obtained for ex vivo muscle contraction tests, quantitative PCR, and histology. RESULTS IgG significantly improved the daily voluntary running performance (1.9 m more total daily running distance, P < 0.0001) and slowed the decrease in grip strength by 0.1 mN, (P = 0.018). IgG reduced fatigability of the diaphragm (improved ratio to maximum force by 0.09 ± 0.04, P = 0.044), but specific tetanic force remained unchanged in the ex vivo muscle contraction test. Cardiac function was significantly better after IgG, especially fractional area shortening (P = 0.012). These results were accompanied by a reduction in cardiac fibrosis and the infiltration of T cells (P = 0.0002) and macrophages (P = 0.0027). In addition, treatment with IgG resulted in a significant reduction of the infiltration of T cells (P ≤ 0.036) in the diaphragm, gastrocnemius, quadriceps, and a similar trend in tibialis anterior and macrophages (P ≤ 0.045) in gastrocnemius, quadriceps, tibialis anterior, and a similar trend in the diaphragm, as well as a decrease in myopathic changes as reflected by a reduced central nuclear index in the diaphragm, tibialis anterior, and quadriceps (P ≤ 0.002 in all). CONCLUSIONS The present study underscores the importance of an inflammatory contribution to the disease progression of DMD. The data demonstrate the long-term efficacy of IgG in the mdx mouse. IgG is well tolerated by humans and could preferentially complement gene therapy in DMD. The data call for a clinical trial with IgG in DMD.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Pia Vanessa Jouvenal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yaxin Zhang
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Florian Klinker
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany.,mzBiostatistics, Statistical Consultancy, Göttingen, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Kim MJ, Bible KL, Regnier M, Adams ME, Froehner SC, Whitehead NP. Simvastatin provides long-term improvement of left ventricular function and prevents cardiac fibrosis in muscular dystrophy. Physiol Rep 2020; 7:e14018. [PMID: 30912308 PMCID: PMC6434171 DOI: 10.14814/phy2.14018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by absence of the protein dystrophin, is a common, degenerative muscle disease affecting 1:5000 males worldwide. With recent advances in respiratory care, cardiac dysfunction now accounts for 50% of mortality in DMD. Recently, we demonstrated that simvastatin substantially improved skeletal muscle health and function in mdx (DMD) mice. Given the known cardiovascular benefits ascribed to statins, the aim of this study was to evaluate the efficacy of simvastatin on cardiac function in mdx mice. Remarkably, in 12‐month old mdx mice, simvastatin reversed diastolic dysfunction to normal after short‐term treatment (8 weeks), as measured by echocardiography in animals anesthetized with isoflurane and administered dobutamine to maintain a physiological heart rate. This improvement in diastolic function was accompanied by increased phospholamban phosphorylation in simvastatin‐treated mice. Echocardiography measurements during long‐term treatment, from 6 months up to 18 months of age, showed that simvastatin significantly improved in vivo cardiac function compared to untreated mdx mice, and prevented fibrosis in these very old animals. Cardiac dysfunction in DMD is also characterized by decreased heart rate variability (HRV), which indicates autonomic function dysregulation. Therefore, we measured cardiac ECG and demonstrated that short‐term simvastatin treatment significantly increased heart rate variability (HRV) in 14‐month‐old conscious mdx mice, which was reversed by atropine. This finding suggests that enhanced parasympathetic function is likely responsible for the improved HRV mediated by simvastatin. Together, these findings indicate that simvastatin markedly improves cardiac health and function in dystrophic mice, and therefore may provide a novel approach for treating cardiomyopathy in DMD.
Collapse
Affiliation(s)
- Min J Kim
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Kenneth L Bible
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Marvin E Adams
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Han G, Gu B, Lin C, Ning H, Song J, Gao X, Moulton HM, Yin H. Hexose Potentiates Peptide-Conjugated Morpholino Oligomer Efficacy in Cardiac Muscles of Dystrophic Mice in an Age-Dependent Manner. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:341-350. [PMID: 31629961 PMCID: PMC6807288 DOI: 10.1016/j.omtn.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Insufficient delivery of oligonucleotides to muscle and heart remains a barrier for clinical implementation of antisense oligonucleotide (AO)-mediated exon-skipping therapeutics in Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by frame-disrupting mutations in the DMD gene. We previously demonstrated that hexose, particularly an equal mix of glucose:fructose (GF), significantly enhanced oligonucleotide delivery and exon-skipping activity in peripheral muscles of mdx mice; however, its efficacy in the heart remains limited. Here we show that co-administration of GF with peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO, namely, BMSP-PMO) induced an approximately 2-fold higher level of dystrophin expression in cardiac muscles of adult mdx mice compared to BMSP-PMO in saline at a single injection of 20 mg/kg, resulting in evident phenotypic improvement in dystrophic mdx hearts without any detectable toxicity. Dystrophin expression in peripheral muscles also increased. However, GF failed to potentiate BMSP-PMO efficiency in aged mdx mice. These findings demonstrate that GF is applicable to both PMO and PPMO. Furthermore, GF potentiates oligonucleotide activity in mdx mice in an age-dependent manner, and, thus, it has important implications for its clinical deployment for the treatment of DMD and other muscular disorders.
Collapse
Affiliation(s)
- Gang Han
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ben Gu
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Caorui Lin
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Hanhan Ning
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Jun Song
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xianjun Gao
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Hong M Moulton
- Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - HaiFang Yin
- School of Medical Laboratory and Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
9
|
Peterson JM, Wang DJ, Shettigar V, Roof SR, Canan BD, Bakkar N, Shintaku J, Gu JM, Little SC, Ratnam NM, Londhe P, Lu L, Gaw CE, Petrosino JM, Liyanarachchi S, Wang H, Janssen PML, Davis JP, Ziolo MT, Sharma SM, Guttridge DC. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun 2018; 9:3431. [PMID: 30143619 PMCID: PMC6109146 DOI: 10.1038/s41467-018-05910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - David J Wang
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Vikram Shettigar
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Steve R Roof
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Q Test Labs, Columbus, OH, 43235, USA
| | - Benjamin D Canan
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Nadine Bakkar
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurobiology, St Joseph's Hospital and Medical Center-Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan Shintaku
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin-Mo Gu
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Biomedical Engineering and Pediatrics, Emory University, Decatur, GA, 30322, USA
| | - Sean C Little
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Bristol-Myers Squibb, Wallingford, CT, 06492, USA
| | - Nivedita M Ratnam
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Leina Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher E Gaw
- The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Petrosino
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Jonathan P Davis
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Mark T Ziolo
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA. .,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA. .,The Ohio State University Medical Center, Columbus, OH, 43210, USA. .,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| |
Collapse
|
10
|
Zheng M, Pan F, Liu Y, Li Z, Zhou X, Meng X, Liu L, Ge S. Echocardiographic Strain Analysis for the Early Detection of Myocardial Structural Abnormality and Initiation of Drug Therapy in a Mouse Model of Dilated Cardiomyopathy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2914-2924. [PMID: 28942269 DOI: 10.1016/j.ultrasmedbio.2017.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/17/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to evaluate the role of echocardiography-based strain analysis in the early diagnosis and guidance for management of dilated cardiomyopathy (DCM). Muscular dystrophy mice (which spontaneously develop DCM) and control (C57 BL/6 J) mice were sequentially evaluated by ultrasound biomicroscopy, conventional left ventricle (LV) measurement, two-dimensional (2-D) strain analysis and myocardial histologic analysis for 12 consecutive months. Significant alternation of LV remodeling and dysfunction could be detected by conventional echocardiography after 9 mo, by strain analysis after 5 mo and by histologic analysis after 4 mo. The global longitudinal systolic peak strain (PK) was the most sensitive strain marker for early detection of myocardial structural abnormality in the subclinical stage. Moreover, losartan administration before the PK decrease was associated with significantly preserved LV function. These results suggest that myocardial strain analysis (particularly longitudinal PK) is sensitive for the early detection of LV dysfunction in mice with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Minjuan Zheng
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Pan
- Department of Orthodontics, Stomatology Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenzhou Li
- Pediatric Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Meng
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liwen Liu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuping Ge
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Pediatric Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Milad N, White Z, Tehrani AY, Sellers S, Rossi FMV, Bernatchez P. Increased plasma lipid levels exacerbate muscle pathology in the mdx mouse model of Duchenne muscular dystrophy. Skelet Muscle 2017; 7:19. [PMID: 28899419 PMCID: PMC5596936 DOI: 10.1186/s13395-017-0135-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/28/2017] [Indexed: 01/11/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin expression and leads to severe ambulatory and cardiac function decline. However, the dystrophin-deficient mdx murine model of DMD only develops a very mild form of the disease. Our group and others have shown vascular abnormalities in animal models of MD, a likely consequence of the fact that blood vessels express the same dystrophin-associated glycoprotein complex (DGC) proteins as skeletal muscles. Methods To test the blood vessel contribution to muscle damage in DMD, mdx4cv mice were given elevated lipid levels via apolipoprotein E (ApoE) gene knockout combined with normal chow or lipid-rich Western diets. Ambulatory function and heart function (via echocardiogram) were assessed at 4 and 7 months of age. After sacrifice, muscle histology and aortic staining were used to assess muscle pathology and atherosclerosis development, respectively. Plasma levels of total cholesterol, high-density lipoprotein (HDL), triglycerides, and creatine kinase (CK) were also measured. Results Although there was an increase in left ventricular heart volume in mdx-ApoE mice compared to that in mdx mice, parameters of heart function were not affected. Compared with wild-type and ApoE-null, only mdx-ApoE KO mice showed significant ambulatory dysfunction. Despite no significant difference in plasma CK, histological analyses revealed that elevated plasma lipids in chow- and Western diet-fed mdx-ApoE mice was associated with severe exacerbation of muscle pathology compared to mdx mice: significant increase in myofiber damage and fibrofatty replacement in the gastrocnemius and triceps brachii muscles, more reminiscent of human DMD pathology. Finally, although both ApoE and mdx-ApoE groups displayed increased plasma lipids, mdx-ApoE exhibited atherosclerotic plaque deposition equal to or less than that of ApoE mice. Conclusions Since others have shown that lipid abnormalities correlate with DMD severity, our data suggest that plasma lipids could be primary contributors to human DMD severity and that the notoriously mild phenotype of mdx mice might be attributable in part to their endogenously low plasma lipid profiles. Hence, DMD patients may benefit from lipid-lowering and vascular-targeted therapies. Electronic supplementary material The online version of this article (10.1186/s13395-017-0135-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Milad
- Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, British Columbia, Canada
| | - Zoe White
- Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, British Columbia, Canada
| | - Arash Y Tehrani
- Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, British Columbia, Canada
| | - Stephanie Sellers
- Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, British Columbia, Canada
| | - Fabio M V Rossi
- Department of Medical Genetics, Centre for Biomedical Research, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Pascal Bernatchez
- Department of Anaesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada. .,Centre for Heart and Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Rm 166, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Chen-Izu Y, Izu LT. Mechano-chemo-transduction in cardiac myocytes. J Physiol 2017; 595:3949-3958. [PMID: 28098356 DOI: 10.1113/jp273101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022] Open
Abstract
The heart has the ability to adjust to changing mechanical loads. The Frank-Starling law and the Anrep effect describe exquisite intrinsic mechanisms the heart has for autoregulating the force of contraction to maintain cardiac output under changes of preload and afterload. Although these mechanisms have been known for more than a century, their cellular and molecular underpinnings are still debated. How does the cardiac myocyte sense changes in preload or afterload? How does the myocyte adjust its response to compensate for such changes? In cardiac myocytes Ca2+ is a crucial regulator of contractile force and in this review we compare and contrast recent studies from different labs that address these two important questions. The 'dimensionality' of the mechanical milieu under which experiments are carried out provide important clues to the location of the mechanosensors and the kinds of mechanical forces they can sense and respond to. As a first approximation, sensors inside the myocyte appear to modulate reactive oxygen species while sensors on the cell surface appear to also modulate nitric oxide signalling; both signalling pathways affect Ca2+ handling. Undoubtedly, further studies will add layers to this simplified picture. Clarifying the intimate links from cellular mechanics to reactive oxygen species and nitric oxide signalling and to Ca2+ handling will deepen our understanding of the Frank-Starling law and the Anrep effect, and also provide a unified view on how arrhythmias may arise in seemingly disparate diseases that have in common altered myocyte mechanics.
Collapse
Affiliation(s)
- Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine/Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
13
|
Blaeser A, Awano H, Wu B, Lu QL. Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice. PLoS One 2016; 11:e0164187. [PMID: 27711214 PMCID: PMC5053477 DOI: 10.1371/journal.pone.0164187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Mutations in the gene for fukutin-related protein represent a subset of muscular dystrophies known as dystroglycanopathies characterized by loss of functionally-glycosylated-alpha-dystroglycan and a wide range of dystrophic phenotypes. Mice generated by our lab containing the P448L mutation in the fukutin-related protein gene demonstrate the dystrophic phenotype similar to that of LGMD2I. Here we examined the morphology of the heart and diaphragm, focusing on pathology of diaphragm and cardiac function of the mutant mice for up to 12 months. Both diaphragm and heart lack clear expression of functionally-glycosylated-alpha-dystroglycan throughout the observed period. The diaphragm undergoes progressive deterioration in histology with increasing amount of centranucleation and inflammation. Large areas of mononuclear cell infiltration and fibrosis of up to 60% of tissue area were detected as early as 6 months of age. Despite a less severe morphology with only patches of mononuclear cell infiltration and fibrosis of ~5% by 12 months of age in the heart, cardiac function is clearly affected. High frequency ultrasound reveals a smaller heart size up to 10 months of age. There are significant increases in myocardial thickness and decrease in cardiac output through 12 months. Dysfunction in the heart represents a key marker for evaluating experimental therapies aimed at cardiac muscle.
Collapse
Affiliation(s)
- Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
- * E-mail: (AB); (QLL)
| | - Hiroyuki Awano
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
| | - Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
| | - Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203, United States of America
- * E-mail: (AB); (QLL)
| |
Collapse
|
14
|
Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002481. [PMID: 26702077 PMCID: PMC4845268 DOI: 10.1161/jaha.115.002481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin‐associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin‐binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. Methods and Results SSPN‐null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β‐adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN‐null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α‐, δ‐, and γ‐subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdxTG) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. Conclusions SSPN regulates sarcolemmal expression of laminin‐binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Reginald T Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.)
| | - Maria C Jordan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Vanitra A Richardson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Kenneth P Roos
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA (R.H.C.W.)
| |
Collapse
|
15
|
Proteomic profiling of the dystrophin-deficient mdx phenocopy of dystrophinopathy-associated cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:246195. [PMID: 24772416 PMCID: PMC3977469 DOI: 10.1155/2014/246195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.
Collapse
|