1
|
Yasuda I, Saludar NRD, Sayo AR, Suzuki S, Yokoyama A, Ozeki Y, Kobayashi H, Nishiyama A, Matsumoto S, Cox SE, Tanaka T, Yamashita Y. Evaluation of cytokine profiles related to Mycobacterium tuberculosis latent antigens using a whole-blood assay in the Philippines. Front Immunol 2024; 15:1330796. [PMID: 38665909 PMCID: PMC11044679 DOI: 10.3389/fimmu.2024.1330796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.
Collapse
Affiliation(s)
- Ikkoh Yasuda
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of General Internal Medicine and Clinical Infectious Diseases, Fukushima Medical University, Fukushima, Japan
- Department of General Internal Medicine and Infectious Diseases, Kita-Fukushima Medical Center, Fukushima, Japan
| | | | | | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Department of Medical Microbiology, Universitas Airlangga, Faculty of Medicine, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan
| | - Sharon E. Cox
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Takeshi Tanaka
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Hospital, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Shunkaikai Inoue Hospital, Nagasaki, Japan
| |
Collapse
|
2
|
Yamashita Y, Yasuda I, Tanaka T, Ikeda T, Terada M, Takaki M, Tsuchihashi Y, Asoh N, Ohara Y, Enany S, Kobayashi H, Matsumoto S, Morimoto K. Antigen-specific cytokine profiles for pulmonary Mycobacterium avium complex disease stage diagnosis. Front Immunol 2023; 14:1222428. [PMID: 37520555 PMCID: PMC10380938 DOI: 10.3389/fimmu.2023.1222428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Controlling pulmonary Mycobacterium avium complex (MAC) disease is difficult because there is no way to know the clinical stage accurately. There have been few attempts to use cell-mediated immunity for diagnosing the stage. The objective of this study was to characterize cytokine profiles of CD4+T and CD19+B cells that recognize various Mycobacterium avium-associated antigens in different clinical stages of MAC. Methods A total of 47 MAC patients at different stages based on clinical information (14 before-treatment, 16 on-treatment, and 17 after-treatment) and 17 healthy controls were recruited. Peripheral blood mononuclear cells were cultured with specific antigens (MAV0968, 1160, 1276, and 4925), and the cytokine profiles (IFN-γ, TNF-α, IL-2, IL-10, IL-13, and IL-17) of CD4+/CD3+ and CD19+ cells were analyzed by flow cytometry. Results The response of Th1 cytokines such as IFN-γ and TNF-α against various antigens was significantly higher in both the on-treatment and after-treatment groups than in the before-treatment group and control (P < 0.01-0.0001 and P < 0.05-0.0001). An analysis of polyfunctional T cells suggested that the presence of IL-2 is closely related to the stage after the start of treatment (P = 0.0309-P < 0.0001) and is involved in memory function. Non-Th1 cytokines, such as IL-10 and IL-17, showed significantly higher responses in the before-treatment group (P < 0.0001 and P < 0.01-0.0001). These responses were not observed with purified protein derivative (PPD). CD19+B cells showed a response similar to that of CD4+T cells. Conclusion There is a characteristic cytokine profile at each clinical stage of MAC.
Collapse
Affiliation(s)
- Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Respiratory Medicine, Shunkaikai Inoue Hospital, Nagasaki, Nagasaki, Japan
| | - Ikkoh Yasuda
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of General Internal Medicine and Clinical Infectious Diseases, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Nagasaki, Japan
| | - Toru Ikeda
- Department of Respiratory Medicine, Nagasaki Rosai Hospital, Sasebo, Nagasaki, Japan
| | - Mayumi Terada
- Department of Internal Medicine, Koseikai Nijigaoka Hospital, Nagasaki, Nagasaki, Japan
| | - Masahiro Takaki
- Department of Respiratory Medicine, Shunkaikai Inoue Hospital, Nagasaki, Nagasaki, Japan
| | - Yoshiko Tsuchihashi
- Department of Respiratory Medicine, Juzenkai Hospital, Nagasaki, Nagasaki, Japan
| | - Norichika Asoh
- Department of Respiratory Medicine, Juzenkai Hospital, Nagasaki, Nagasaki, Japan
| | - Yukiko Ohara
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Niigata, Japan
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Niigata, Japan
| | - Konosuke Morimoto
- Department of Internal Medicine, Koseikai Nijigaoka Hospital, Nagasaki, Nagasaki, Japan
- Department of Respiratory Infectious Disease, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Nagasaki, Japan
| |
Collapse
|
3
|
Zhao Y, Zhang J, Xue B, Zhang F, Xu Q, Ma H, Sha T, Peng L, Li F, Ding J. Serum levels of inhibitory costimulatory molecules and correlations with levels of innate immune cytokines in patients with pulmonary tuberculosis. J Int Med Res 2021; 49:3000605211036832. [PMID: 34463584 PMCID: PMC8414942 DOI: 10.1177/03000605211036832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To analyze serum levels of inhibitory costimulatory molecules and their
correlations with innate immune cytokine levels in patients with pulmonary
tuberculosis (PTB). Methods Data for 280 PTB patients and 280 healthy individuals were collected. Serum
levels of immune molecules were measured using ELISA. Univariate,
multivariate, subgroup, matrix correlation, and receiver operating
characteristic curve analyses were performed. Results Host, environment, lifestyle, clinical features, and medical history all
influenced PTB. Serum levels of soluble programmed death ligand 1 (sPD-L1),
soluble T-cell immunoglobulin- and mucin-domain–containing molecule 3
(sTim-3), soluble galectin-9 (sGal-9), interleukin (IL)-4, and IL-33 were
significantly higher in patients with PTB, while levels of IL-12, IL-23,
IL-18, and interferon (IFN)-γ were significantly lower. Serum levels of
sTim-3 were higher in alcohol users. Levels of sTim-3 were negatively
correlated with those of IL-12. Levels of IL-12, IL-23, and IL-18 were
positively correlated with those of IFN-γ, while levels of IL-12 were
negatively correlated with those of IL-4. The areas under the curve of
sPD-L1, sTim-3, sGal-9, IL-12, IL-23, IL-18, IFN-γ, IL-4, and IL-33 for
identifying PTB were all >0.77. Conclusions Inhibitory costimulatory molecules may be targets for controlling PTB. Immune
molecules may be helpful for diagnosis of PTB.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.,Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jia Zhang
- Postdoctoral Workstation of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Bing Xue
- Shihezi University School of Medicine, Shihezi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haimei Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tong Sha
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Peng
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Yamashita Y, Oe T, Kawakami K, Osada-Oka M, Ozeki Y, Terahara K, Yasuda I, Edwards T, Tanaka T, Tsunetsugu-Yokota Y, Matsumoto S, Ariyoshi K. CD4 + T Responses Other Than Th1 Type Are Preferentially Induced by Latency-Associated Antigens in the State of Latent Mycobacterium tuberculosis Infection. Front Immunol 2019; 10:2807. [PMID: 31849981 PMCID: PMC6897369 DOI: 10.3389/fimmu.2019.02807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) produces a diverse range of antigenic proteins in its dormant phase. The cytokine profiles of CD4+ T cell responses, especially subsets other than Th1 type (non-Th1 type), against these latency-associated M. tuberculosis antigens such as α-crystallin (Acr), heparin-binding hemagglutinin (HBHA), and mycobacterial DNA-binding protein 1 (MDP-1) remain elusive in relation to the clinical stage of M. tuberculosis infection. In the present study, peripheral blood mononuclear cells (PBMCs) collected from different stages of M. tuberculosis-infected cases and control PBMCs were stimulated with these antigens and ESAT-6/CFP-10. Cytokine profiles of CD4+ T cells were evaluated by intracellular cytokine staining using multicolor flow cytometry. Our results demonstrate that Th1 cytokine responses were predominant after TB onset independent of the type of antigen stimulation. On the contrary, non-Th1 cytokine responses were preferentially induced by latency-associated M. tuberculosis antigens, specifically IL-10 response against Acr in latent M. tuberculosis infection. From these results, we surmise a shift in the CD4+ T cell response from mixed non-Th1 to Th1 dominant type during TB progression.
Collapse
Affiliation(s)
- Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Toshiyuki Oe
- Department of Respiratory Medicine, National Hospital Organization Higashi-Saga Hospital, Miyaki, Japan
| | - Kenji Kawakami
- Department of Respiratory Medicine, National Hospital Organization Nagasaki-Kawatana Medical Center, Kawatana, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ikkoh Yasuda
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Tansy Edwards
- Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Takeshi Tanaka
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Medical Technology, School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan.,Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki, Japan
| |
Collapse
|
5
|
Corral-Fernández N, Cortez-Espinosa N, Salgado-Bustamante M, Romano-Moreno S, Medellín-Garibay S, Solis-Rodríguez M, Hernández-Castro B, Macías-Mendoza J, González-Amaro R, Portales-Pérez D. Induction of transcription factors, miRNAs and cytokines involved in T lymphocyte differentiation in BCG-vaccinated subjects. Mol Immunol 2016; 77:44-51. [DOI: 10.1016/j.molimm.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/25/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
|
6
|
Evaluation of Humoral Immunity to Mycobacterium tuberculosis-Specific Antigens for Correlation with Clinical Status and Effective Vaccine Development. J Immunol Res 2015; 2015:527395. [PMID: 26568961 PMCID: PMC4629042 DOI: 10.1155/2015/527395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/01/2022] Open
Abstract
Although tuberculosis remains a major global health problem, Bacille Calmette-Guérin (BCG) is the only available vaccine. However, BCG has limited applications, and a more effective vaccine is needed. Cellular mediated immunity (CMI) is thought to be the most important immune response for protection against Mycobacterium tuberculosis (Mtb). However, the recent failure of a clinical trial for a booster BCG vaccine and increasing evidence of antibody-mediated immunity prompted us to evaluate humoral immunity to Mtb-specific antigens. Using Enzyme-Linked ImmunoSpot and Enzyme-Linked ImmunoSorbent Assays, we observed less correlation of both CMI and IgG titers with patient clinical status, including serum concentration of C reactive protein. However, IgA titers against Mtb were significantly correlated with clinical status, suggesting that specific IgA antibodies protect against Mtb proliferation. In addition, in some cases, IgA antibody titers were significantly associated with the serum concentration of total albumin, which supports the idea that humoral immunity can be influenced by the nutritional status. Based on these observations, we propose that the induction of humoral immunity should be included as an option in TB vaccine development strategies.
Collapse
|
7
|
Mothé BR, Lindestam Arlehamn CS, Dow C, Dillon MBC, Wiseman RW, Bohn P, Karl J, Golden NA, Gilpin T, Foreman TW, Rodgers MA, Mehra S, Scriba TJ, Flynn JL, Kaushal D, O'Connor DH, Sette A. The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis (Edinb) 2015; 95:722-735. [PMID: 26526557 DOI: 10.1016/j.tube.2015.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/05/2023]
Abstract
Non-human primate (NHP) models of tuberculosis (TB) immunity and pathogenesis, especially rhesus and cynomolgus macaques, are particularly attractive because of the high similarity of the human and macaque immune systems. However, little is known about the MHC class II epitopes recognized in macaques, thus hindering the establishment of immune correlates of immunopathology and protective vaccination. We characterized immune responses in rhesus macaques vaccinated against and/or infected with Mycobacterium tuberculosis (Mtb), to a panel of antigens currently in human vaccine trials. We defined 54 new immunodominant CD4(+) T cell epitopes, and noted that antigens immunodominant in humans are also immunodominant in rhesus macaques, including Rv3875 (ESAT-6) and Rv3874 (CFP10). Pedigree and inferred restriction analysis demonstrated that this phenomenon was not due to common ancestry or inbreeding, but rather presentation by common alleles, as well as, promiscuous binding. Experiments using a second cohort of rhesus macaques demonstrated that a pool of epitopes defined in the previous experiments can be used to detect T cell responses in over 75% of individual monkeys. Additionally, 100% of cynomolgus macaques, irrespective of their latent or active TB status, responded to rhesus and human defined epitope pools. Thus, these findings reveal an unexpected general repertoire overlap between MHC class II epitopes recognized in both species of macaques and in humans, showing that epitope pools defined in humans can also be used to characterize macaque responses, despite differences in species and antigen exposure. The results have general implications for the evaluation of new vaccines and diagnostics in NHPs, and immediate applicability in the setting of macaque models of TB.
Collapse
Affiliation(s)
- Bianca R Mothé
- Department of Biology, CSUSM, San Marcos, CA 92096, USA; La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | | - Courtney Dow
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Myles B C Dillon
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Patrick Bohn
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Julie Karl
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Trey Gilpin
- Department of Biology, CSUSM, San Marcos, CA 92096, USA
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, LA 70803, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Department of Pediatrics and Child Health, University of Cape Town, Cape Town 7925, South Africa
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15216, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center and Department of Pathology and Laboratory Medicine, UW-Madison, Madison, WI 53706, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41:402-413. [PMID: 25176311 DOI: 10.1016/j.immuni.2014.08.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 08/07/2014] [Indexed: 11/15/2022]
Abstract
Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.
Collapse
Affiliation(s)
- Akiko Yonekawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Maho Suzukawa
- Center for Pulmonary Diseases, National Hospital Organization, Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masato Tanaka
- Laboratory for Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
9
|
García Jacobo RE, Serrano CJ, Enciso Moreno JA, Gaspar Ramírez O, Trujillo Ochoa JL, Uresti Rivera EE, Portales Pérez DP, González-Amaro R, García Hernández MH. Analysis of Th1, Th17 and regulatory T cells in tuberculosis case contacts. Cell Immunol 2014; 289:167-73. [PMID: 24841855 DOI: 10.1016/j.cellimm.2014.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/20/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
Abstract
We have hypothesized that individuals infected with Mycobacteriumtuberculosis that exhibit different patterns of immune reactivity in serial interferon (IFN)-γ release assays (IGRA's) correspond to different status within the immune spectrum of latent tuberculosis (TB). Accordingly, we analyzed the possible association between the consistent results (negative or positive) in an IGRA test and relevant immune parameters, mainly the levels of Th1 and Th17 lymphocytes and T regulatory (Treg) cells in the peripheral blood of TB case contacts. We found that individuals with a persistently positive IGRA showed increased levels of Th1 and Th17 lymphocytes upon in vitro stimulation with MTB antigens. In addition, a significant increase in the proportion of CD4+CTLA-4+ and CD4+Foxp3+ cells was detected in assays with blood samples from these individuals. Our data support that different immune phenotypes can be identified into the spectrum of latent TB, by combining different parameters of immune reactivity against MTB.
Collapse
Affiliation(s)
- R E García Jacobo
- Unidad de Investigación Médica-Zacatecas, Instituto Mexicano del Seguro Social, IMSS, Mexico
| | - C J Serrano
- Unidad de Investigación Médica-Zacatecas, Instituto Mexicano del Seguro Social, IMSS, Mexico
| | - J A Enciso Moreno
- Unidad de Investigación Médica-Zacatecas, Instituto Mexicano del Seguro Social, IMSS, Mexico
| | - O Gaspar Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad Noreste., Monterrey, Nuevo León, Mexico
| | - J L Trujillo Ochoa
- Unidad de Investigación Médica-Zacatecas, Instituto Mexicano del Seguro Social, IMSS, Mexico
| | - E E Uresti Rivera
- Departamento de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, Mexico
| | - D P Portales Pérez
- Departamento de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, SLP, Mexico
| | - R González-Amaro
- Departamento de Inmunología, Facultad de Medicina, UASLP, San Luis Potosí, SLP, Mexico
| | - M H García Hernández
- Unidad de Investigación Médica-Zacatecas, Instituto Mexicano del Seguro Social, IMSS, Mexico.
| |
Collapse
|
10
|
Immunological responses and epitope mapping by tuberculosis-associated antigens within the RD1 region in Japanese patients. J Immunol Res 2014; 2014:764028. [PMID: 24741623 PMCID: PMC3987935 DOI: 10.1155/2014/764028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis remains a major global health problem worldwide, and hence there is a need for novel vaccines that better induce cellular-mediated immunity (CMI). In search of a better vaccine target, the QuantiFERON-TB Gold In-Tube Test (QFT-GIT) and the interferon-γ ELISPOT assay (ELISPOT) were used to compare the magnitude of CMI in patients. Results of the ELISPOT assay led to the discovery of specific epitopes within the early secreted antigenic target 6 kDa (ESAT-6) and culture filtrate protein 10 kDa (CFP-10) proteins. Both peptides showed a strong association with several HLA class II DRB1 molecules in the Japanese population. Using ESAT-6-specific HLA class II tetramers, we determined that the expression of ESAT-6-specific CD4+ lymphocytes was significantly decreased in treated patients compared with active patients. In addition, programmed death-1 (PD-1)/killer cell lectin-like receptor G1 (KLRG-1) double positive cells were found only in treated patients and not in those with active TB. These data could provide clues for the development of novel tuberculosis vaccines.
Collapse
|