1
|
Tamai S, Katafuchi M, Hui X, Suzuki Y. Detection and collection of shiga toxin-producing Escherichia coli using foam concentration without membrane filtration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117797. [PMID: 39889473 DOI: 10.1016/j.ecoenv.2025.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Information on Shiga toxin-producing Escherichia coli (STEC) in river water is scarce, and it is essential to understand its actual status in river water. This study investigated a method for the highly efficient recovery of STEC from river water in its active state by combining a coagulation and foam concentration and a selective medium. The method was applied to three rivers, and STEC-positive Escherichia coli (E. coli) were obtained from all rivers. Ten E. coli harboring one of the pathogenic genes (stx2, eae) were detected in the Oyodo River's upstream and midstream and the Kaeda River's midstream. Furthermore, antimicrobial agent susceptibility testing was performed on these ten strains using ten antimicrobial agents. Nine strains showed intermediate resistance to at least one antibiotic, and one was multidrug-resistant. This study's coagulation and foam concentration and selective medium detection methods can efficiently collect STEC in river water and recover it in an active state without conventional membrane filtration. Isolating and cultivating this STEC strain will provide crucial information for antimicrobial agent susceptibility testing, target gene testing, and whole-genome analysis.
Collapse
Affiliation(s)
- Soichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Makoto Katafuchi
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Xie Hui
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
2
|
Hirose S, Ohya K, Yoshinari T, Ohnishi T, Mizukami K, Suzuki T, Takinami K, Suzuki T, Lee K, Iyoda S, Akeda Y, Yahata Y, Tsuchihashi Y, Sunagawa T, Hara-Kudo Y. Atypical diarrhoeagenic Escherichia coli in milk related to a large foodborne outbreak. Epidemiol Infect 2023; 151:e150. [PMID: 37694773 PMCID: PMC10540162 DOI: 10.1017/s0950268823001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
A foodborne outbreak related to milk cartons served in school lunches occurred in June 2021, which involved more than 1,800 cases from 25 schools. The major symptoms were abdominal pain, diarrhoea, vomiting, and fever. Although major foodborne toxins and pathogens were not detected, a specific Escherichia coli strain, serotype OUT (OgGp9):H18, was predominantly isolated from milk samples related to the outbreak and most patients tested. The strains from milk and patient stool samples were identified as the same clone by core genome multilocus sequence typing and single-nucleotide polymorphism analysis. The strain was detected in milk samples served for two days related to the foodborne outbreak at a rate of 69.6% and levels of less than ten most probable number/100 mL but not on days unrelated to the outbreak. The acid tolerance of the strain for survival in the stomach was similar to that of enterohaemorrhagic E. coli O157:H7, and the same inserts in the chu gene cluster in the acid fitness island were genetically revealed. The pathogenicity of the strain was not clear; however, it was indicated that the causative pathogen was atypical diarrhoeagenic E. coli OUT (OgGp9):H18.
Collapse
Affiliation(s)
- Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kenji Ohya
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuichiro Yahata
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuuki Tsuchihashi
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomimasa Sunagawa
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
3
|
Suzuki Y, Shimizu H, Tamai S, Hoshiko Y, Maeda T, Nukazawa K, Iguchi A, Masago Y, Ishii S. Simultaneous detection of various pathogenic Escherichia coli in water by sequencing multiplex PCR amplicons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:264. [PMID: 36600083 DOI: 10.1007/s10661-022-10863-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Waterborne diseases due to pathogen contamination in water are a serious problem all over the world. Accurate and simultaneous detection of pathogens in water is important to protect public health. In this study, we developed a method to simultaneously detect various pathogenic Escherichia coli by sequencing the amplicons of multiplex PCR. Our newly designed multiplex PCR amplified five genes for pathogenic E. coli (uidA, stx1, stx2, STh gene, and LT gene). Additional two PCR assays (for aggR and eae) were also designed and included in the amplicon sequencing analysis. The same assays were also used for digital PCR (dPCR). Strong positive correlations were observed between the sequence read count and the dPCR results for most of the genes targeted, suggesting that our multiplex PCR-amplicon sequencing approach could provide quantitative information. The method was also successfully applied to monitor the level of pathogenic E. coli in river water and wastewater samples. The approach shown here could be expanded by targeting genes for other pathogens.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan.
| | - Hiroki Shimizu
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Shouichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
- Present address: Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume-City, Fukuoka, 830-0011, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshifumi Masago
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Ibaraki, Japan
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, Falcon Heights, MN, USA
- Bio Technology Institute, University of Minnesota, Falcon Heights, MN, USA
| |
Collapse
|
4
|
Truncated Class 1 Integron Gene Cassette Arrays Contribute to Antimicrobial Resistance of Diarrheagenic Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4908189. [PMID: 32090095 PMCID: PMC7013361 DOI: 10.1155/2020/4908189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022]
Abstract
Class 1 integrons (c1-integrons) are associated with multidrug resistance in diarrheagenic Escherichia coli (DEC). However, little is known about gene cassettes located within these c1-integrons, particularly truncated c1-integrons, in DEC strains. Therefore, the aims of the present study were to reveal the relationship between antimicrobial resistance and the presence of truncated c1-integrons in DEC isolates derived from human stool samples in Japan. A total of 162 human stool-derived DEC isolates from Japan were examined by antimicrobial susceptibility testing, PCR-based gene detection, and next-generation sequencing analyses. Results showed that 44.4% (12/27) of c1-integrons identified in the DEC isolates harbored only intI1 (an element of c1-integrons) and were truncated by IS26, Tn3, or IS1-group insertion sequences. No difference in the frequency of antimicrobial resistance was recorded between intact and truncated c1-integron-positive DEC isolates. Isolates containing intact/truncated c1-integrons, particularly enteroaggregative E. coli isolates, were resistant to a greater number of antimicrobials than isolates without c1-integrons. aadA and dfrA were the most prevalent antimicrobial resistance genes in the intact/truncated c1-integrons examined in this study. Therefore, gene cassettes located within these intact/truncated c1-integrons may only play a limited role in conferring antimicrobial resistance among DEC. However, DEC harboring truncated c1-integrons may be resistant to a greater number of antimicrobials than c1-integron-negative DEC, similar to strains harboring intact c1-integrons.
Collapse
|
5
|
Distribution of genes encoding virulence factors and multilocus variable-number tandem-repeat analysis (MLVA) of entero-aggregative Escherichia coli (EAEC) isolated in Iran from patients with diarrhoea. J Med Microbiol 2018; 67:1334-1339. [DOI: 10.1099/jmm.0.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Amin M, Sirous M, Javaherizadeh H, Motamedifar M, Saki M, Veisi H, Ebrahimi S, Seyed-Mohammadi S, Hashemzadeh M. Antibiotic resistance pattern and molecular characterization of extended-spectrum β-lactamase producing enteroaggregative Escherichia coli isolates in children from southwest Iran. Infect Drug Resist 2018; 11:1097-1104. [PMID: 30127627 PMCID: PMC6089113 DOI: 10.2147/idr.s167271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Enteroaggregative Escherichia coli (EAEC) has been implicated as an emerging cause of traveler’s diarrhea, persistent diarrhea among children, and immunocompromised patients. The present study aimed to investigate the prevalence of antibiotic resistance, extendedspectrum β-lactamase (ESBL) production, and virulence factors of EAEC isolates obtained from Iranian children suffered from diarrhea. Materials and methods In this cross-sectional study, from March 2015 to February 2016, 32 EAEC isolates were collected from fecal samples of children aged <12 years with diarrhea in southwest of Iran. All EAEC isolates identified using phenotypic and molecular methods and the cell line adhesion assay. Antimicrobial susceptibility testing was determined using disk diffusion method. The presence of virulence factors and ESBL resistance genes were determined by polymerase chain reaction. Results Overall, 28.1% (9/32) of the isolates were positive for at least one of virulence genes. The most frequent gene was aap with a frequency of 96.9%. Neither aafA nor aggA gene was detected among all of the EAEC isolates. Antimicrobial susceptibility testing revealed the highest resistance rate to ampicillin (100%) and co-trimoxazole (100%), followed by ceftriaxone (81.3%). Further analysis revealed that the rate of ESBLs-producing isolates was 71.9% (23/32). Polymerase chain reaction screening revealed that 87.5% and 65.5% of EAEC isolates were positive for blaTEM and blaCTX-M genes, respectively, and 17 (53.1%) of isolates contained both blaTEM and blaCTX-M genes. Conclusion The high detection rate of ESBL-producing EAEC isolates accompanied with virulence genes highlights a need to restrict infection control policies in order to prevent further dissemination of the resistant and virulent EAEC strains.
Collapse
Affiliation(s)
- Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mehrandokht Sirous
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Hazhir Javaherizadeh
- Abuzar Children's Hospital, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nursing Care Research Center in Chronic Diseases, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Hojat Veisi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Saeedeh Ebrahimi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, Faculty of Mdicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sakineh Seyed-Mohammadi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| |
Collapse
|