1
|
Kim GR, Kim EY, Kim SH, Lee HK, Lee J, Shin JH, Kim YR, Song SA, Jeong J, Uh Y, Kim YK, Yong D, Kim HS, Kim S, Kim YA, Shin KS, Jeong SH, Ryoo N, Shin JH. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Causing Invasive Pneumococcal Disease in Korea Between 2017 and 2019 After Introduction of the 13-Valent Pneumococcal Conjugate Vaccine. Ann Lab Med 2023; 43:45-54. [PMID: 36045056 PMCID: PMC9467834 DOI: 10.3343/alm.2023.43.1.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 08/20/2022] [Indexed: 01/14/2023] Open
Abstract
Background Streptococcus pneumoniae is a serious pathogen causing various infections in humans. We evaluated the serotype distribution and antimicrobial resistance of S. pneumoniae causing invasive pneumococcal disease (IPD) after introduction of pneumococcal conjugate vaccine (PCV)13 in Korea and investigated the epidemiological characteristics of multidrug-resistant (MDR) isolates. Methods S. pneumoniae isolates causing IPD were collected from 16 hospitals in Korea between 2017 and 2019. Serotyping was performed using modified sequential multiplex PCR and the Quellung reaction. Antimicrobial susceptibility tests were performed using the broth microdilution method. Multilocus sequence typing was performed on MDR isolates for epidemiological investigations. Results Among the 411 S. pneumoniae isolates analyzed, the most prevalent serotype was 3 (12.2%), followed by 10A (9.5%), 34 (7.3%), 19A (6.8%), 23A (6.3%), 22F (6.1%), 35B (5.8%), 11A (5.1%), and others (40.9%). The coverage rates of PCV7, PCV10, PCV13, and pneumococcal polysaccharide vaccine (PPSV)23 were 7.8%, 7.8%, 28.7%, and 59.4%, respectively. Resistance rates to penicillin, ceftriaxone, erythromycin, and levofloxacin were 13.1%, 9.2%, 80.3%, and 4.1%, respectively. MDR isolates accounted for 23.4% of all isolates. Serotypes 23A, 11A, 19A, and 15B accounted for the highest proportions of total isolates at 18.8%, 16.7%, 14.6%, and 8.3%, respectively. Sequence type (ST)166 (43.8%) and ST320 (12.5%) were common among MDR isolates. Conclusions Non-PCV13 serotypes are increasing among invasive S. pneumoniae strains causing IPD. Differences in antimicrobial resistance were found according to the specific serotype. Continuous monitoring of serotypes and antimicrobial resistance is necessary for the appropriate management of S. pneumoniae infections.
Collapse
Affiliation(s)
- Gyu Ri Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Eun-Young Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, College of Medicine, Jeju National University, Jeju, Korea
| | - Sae Am Song
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yu Kyung Kim
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Namhee Ryoo
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
2
|
Zhou ML, Wang ZR, Li YB, Kudinha T, Wang J, Wang Y, Xiao M, Xu YC, Liu ZY, Hsueh PR. Rapid identification of Streptococcus pneumoniae serotypes by cpsB gene-based sequetyping combined with multiplex PCR. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:870-879. [PMID: 34924338 DOI: 10.1016/j.jmii.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/PURPOSE Streptococcus pneumoniae is an important human pathogen that causes invasive infections in adults and children. Accurate serotyping is important to study its epidemiological distribution and to assess vaccine efficacy. METHODS Invasive S. pneumoniae isolates (n = 300) from 27 teaching hospitals in China were studied. The Quellung reaction was used as the gold standard to identify the S. pneumoniae serotypes. Subsequently, multiplex PCR and cpsB gene-based sequetyping methods were used to identify the serotypes. RESULTS Based on the Quellung reaction, 299 S. pneumoniae isolates were accurately identified to the serotype level and 40 different serotypes were detected. Only one strain was non-typeable, and five most common serotypes were identified: 23F (43, 14.3%), 19A (41, 13.7%), 19F (41, 13.7%), 3 (31, 10.3%), and 14 (27, 9.0%). Overall, the multiplex PCR method identified 73.3 and 20.7% of the isolates to the serotype and cluster levels, respectively, with 1.7% of the isolates misidentified. In contrast, the cpsB sequetyping method identified 59.0 and 30.3% of the isolates to the serotype and cluster levels, respectively, and 7% were misidentified. CONCLUSIONS The cpsB gene sequetyping method combined with multiplex PCR, can greatly improve the accuracy and efficiency of serotyping, besides reducing the associated costs.
Collapse
Affiliation(s)
- Meng-Lan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zi-Ran Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yan-Bing Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia; Regional and Rural, NSW Health Pathology, Orange Hospital, NSW 2800, Australia
| | - Jian Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yao Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| | - Zheng-Yin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Ph.D Programme for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|