1
|
Samune Y, Saito A, Sasaki T, Koketsu R, Srimark N, Phadungsombat J, Yokoyama M, Kotani O, Sato H, Yamanaka A, Haga S, Okamoto T, Kurosu T, Nakayama EE, Shioda T. Genetic regions affecting the replication and pathogenicity of dengue virus type 2. PLoS Negl Trop Dis 2024; 18:e0011885. [PMID: 38190404 PMCID: PMC10798627 DOI: 10.1371/journal.pntd.0011885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/19/2024] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.
Collapse
Affiliation(s)
- Yoshihiro Samune
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ritsuko Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Narinee Srimark
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Atsushi Yamanaka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Saori Haga
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Poltep K, Phadungsombat J, Nakayama EE, Kosoltanapiwat N, Hanboonkunupakarn B, Wiriyarat W, Shioda T, Leaungwutiwong P. Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018-2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades. Trop Med Infect Dis 2021; 6:tropicalmed6030162. [PMID: 34564546 PMCID: PMC8482112 DOI: 10.3390/tropicalmed6030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue is an arboviral disease highly endemic in Bangkok, Thailand. To characterize the current genetic diversity of dengue virus (DENV), we recruited patients with suspected DENV infection at the Hospital for Tropical Diseases, Bangkok, during 2018-2020. We determined complete nucleotide sequences of the DENV envelope region for 111 of 276 participant serum samples. All four DENV serotypes were detected, with the highest proportion being DENV-1. Although all DENV-1 sequences were genotype I, our DENV-1 sequences were divided into four distinct clades with different distributions in Asian countries. Two genotypes of DENV-2 were identified, Asian I and Cosmopolitan, which were further divided into two and three distinct clades, respectively. In DENV-3, in addition to the previously dominant genotype III, a cluster of 6 genotype I viruses only rarely reported in Thailand was also observed. All of the DENV-4 viruses belonged to genotype I, but they were separated into three distinct clades. These results indicated that all four serotypes of DENV with multiple genotypes and/or clades co-circulate in Bangkok. Continuous investigation of DENV is warranted to further determine the relationship between DENV within Thailand and neighboring countries in Southeast Asia and Asia.
Collapse
Affiliation(s)
- Kanaporn Poltep
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.P.); (E.E.N.)
- Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
- Correspondence: (T.S.); (P.L.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.P.); (N.K.)
- Correspondence: (T.S.); (P.L.)
| |
Collapse
|
3
|
A Cluster of Dengue Cases in Travelers: A Clinical Series from Thailand. Trop Med Infect Dis 2021; 6:tropicalmed6030152. [PMID: 34449752 PMCID: PMC8396219 DOI: 10.3390/tropicalmed6030152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Dengue is an overlooked tropical disease for which billions of people are at risk. The disease, caused by a Flavivirus with four distinct serotypes, is transmitted primarily by urban Aedes mosquito species. The infection leads to a spectrum of clinical manifestations, with the majority being asymptomatic. Primary dengue fever and, to a greater extent, a subsequent infection with a different serotype is associated with increased severity. Increased global travel and recreational tourism expose individuals naïve to the dengue viruses, the most common arboviral infections among travelers. We describe a cluster of possible primary acute dengue infections in a group of 12 individuals who presented to Bangkok Hospital for Tropical Diseases in 2017. Infection was confirmed by dengue NS1 antigen and multiplex real-time RT-PCR. Nine individuals required hospitalization, and four developed dengue warning signs. Leukocytes, neutrophils, and platelets declined towards defervescence and were negatively correlated with day of illness. Six clinical isolates were identified as dengue serotype-1, with 100% nucleotide identity suggesting that these patients were infected with the same virus.
Collapse
|