1
|
Ergunay K, Dincer E, Justi SA, Bourke BP, Nelson SP, Liao HM, Timurkan MO, Oguz B, Sahindokuyucu I, Gokcecik OF, Reinbold-Wasson DD, Jiang L, Achee NL, Grieco JP, Linton YM. Impact of nanopore-based metagenome sequencing on tick-borne virus detection. Front Microbiol 2023; 14:1177651. [PMID: 37323891 PMCID: PMC10267750 DOI: 10.3389/fmicb.2023.1177651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction We evaluated metagenomic nanopore sequencing (NS) in field-collected ticks and compared findings from amplification-based assays. Methods Forty tick pools collected in Anatolia, Turkey and screened by broad-range or nested polymerase chain reaction (PCR) for Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and Jingmen tick virus (JMTV) were subjected to NS using a standard, cDNA-based metagenome approach. Results Eleven viruses from seven genera/species were identified. Miviruses Bole tick virus 3 and Xinjiang mivirus 1 were detected in 82.5 and 2.5% of the pools, respectively. Tick phleboviruses were present in 60% of the pools, with four distinct viral variants. JMTV was identified in 60% of the pools, where only 22.5% were PCR-positive. CCHFV sequences characterized as Aigai virus were detected in 50%, where only 15% were detected by PCR. NS produced a statistically significant increase in detection of these viruses. No correlation of total virus, specific virus, or targeted segment read counts was observed between PCR-positive and PCR-negative samples. NS further enabled the initial description of Quaranjavirus sequences in ticks, where human and avian pathogenicity of particular isolates had been previously documented. Discussion NS was observed to surpass broad-range and nested amplification in detection and to generate sufficient genome-wide data for investigating virus diversity. It can be employed for monitoring pathogens in tick vectors or human/animal clinical samples in hot-spot regions for examining zoonotic spillover.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ender Dincer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Suppaluck P. Nelson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Hsiao-Mei Liao
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum, Türkiye
| | - Bekir Oguz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Türkiye
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | - Omer Faruk Gokcecik
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | | | - Le Jiang
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| |
Collapse
|
2
|
Bratuleanu BE, Temmam S, Munier S, Chrétien D, Bigot T, van der Werf S, Savuta G, Eloit M. Detection of Phenuiviridae, Chuviridae Members, and a Novel Quaranjavirus in Hard Ticks From Danube Delta. Front Vet Sci 2022; 9:863814. [PMID: 35498749 PMCID: PMC9044029 DOI: 10.3389/fvets.2022.863814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The members of the Quaranjavirus genus are mainly associated with argas ticks but recent studies demonstrated the presence of novel quaranjaviruses-like in ixodid ticks. In 2020, 169 Rhipicephalus sanguineus ticks were collected in Southern Romania from small ruminants and analyzed by high-throughput transcriptome sequencing. Among the viral families that infect Romanian ticks, we have identified sequences from Phenuiviridae (Brown dog tick phlebovirus 1 [BDTPV1] and Brown dog tick phlebovirus 2 [BDTPV2]) and Chuviridae families (Cataloi mivirus [CTMV]), and numerous sequences from a new quaranjavirus-like, tentatively named Cataloi tick quaranjavirus (CTQV). Phylogenetic analyses performed on the five segments show that CTQV is phylogenetically positioned within a clade that encompasses Ixodidae-borne viruses associated with iguanas, small ruminants, seabirds, and penguins distributed across different geographical areas. Furthermore, CTQV is positioned differently depending on the segment considered. This is the first report on the detection of a quaranjavirus-like in Eastern Europe. Further investigations are needed to discern its infectivity and pathogenicity against vertebrates.
Collapse
Affiliation(s)
- Bianca Elena Bratuleanu
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Sandie Munier
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Gheorghe Savuta
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
- Alfort National Veterinary School, Maisons-Alfort, France
- *Correspondence: Marc Eloit
| |
Collapse
|